b733e4
Проверьте знания по математике бесплатно
Узнать бесплатно
Modal window id: popup-shopmath

Сложение дробей: теория и практика

Сложение дробей: теория и практика
283.6K

Тема дробей — одна из самых объемных в математике. Начиная с пятого класса и до самого выпуска из школы эти правила будут пригождаться вновь и вновь. В этой статье разберемся со сложением. Поехали!

Сложение дробей – это процесс нахождения суммы двух или более дробей. Чтобы сложить дроби с разными знаменателями, необходимо:

  • Привести дроби к общему знаменателю.
  • Сложить числители полученных дробей.

Например:

1/4 + 1/3 = 3/12 + 4/12 = 7/12.

Понятие дроби

Дробь — одна из форм записи частного чисел a и b, представленная в виде a/b. Существует два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.

состав дроби

Дроби бывают двух видов:

  1. Числовые — состоят из чисел, например, 5/9 или (1,5 − 0,2)/15.

  2. Алгебраические — состоят из переменных, например, (x + y)/(x − y). В этом случае значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.

Неправильной называют такую дробь, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1/4.

Modal window id: popup-professionsbox

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Онлайн-школа Skysmart приглашает детей и подростков на курсы по математике — за интересными задачами, новыми прикладными знаниями и хорошими оценками!

Получи больше пользы от Skysmart:

Как плюсовать дроби

Плюсовать дроби - это складывать их по определенному правилу.

  • Дроби с общим знаменателем складывают, суммируя числители и сохраняя знаменатель. Пример: 2/5 + 1/5 = (2+1)/5 = 3/5.
  • Дроби с разными знаменателями приводят к общему знаменателю, затем складывают их числители. Пример: 1/4 + 1/6 = (3/12 + 2/12) = 5/12.

Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.

Свойства сложения

  • От перестановки мест слагаемых сумма не меняется: a + b = b + a.
  • Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа: (a + b) + c = a + (b + c).
  • Если к числу прибавить ноль, получится само число: a + 0 = 0 + a = a
  • При сложении числа можно переставлять и объединять в группы, результат от этого не изменится.

Давайте рассмотрим несколько вариантов сложения обыкновенных дробей. 

Сложение дробей с одинаковыми знаменателями

Складывать дроби с одинаковыми знаменателями - процесс суммирования только числителей при сохранении знаменателя. Например, для , складываем числители (3 + 2 = 5), и оставляем знаменатель (5). Получаем .

Чтобы получить сумму двух дробей с равными знаменателями, нужно сложить числители исходных дробей, а знаменатель оставить прежним.
сложение дробей с одинаковыми знаменателями запись при помощи букв

Не забудьте проверить, можно ли сократить дробь.
сложение дробей с одинаковыми знаменателями

Сложение дробей с разными знаменателями

Как складывать дроби с разными знаменателями — для этого нужно найти наименьший общий знаменатель (далее — НОЗ), а затем воспользоваться предыдущим правилом. Вот, что делать:

1. Найдем наименьшее общее кратное знаменателей (далее — НОК) для определения единого делителя.
сложение дробей с разными знаменателями

Для этого записываем в столбик числа, которые в произведении дают значения знаменателей складываемых дробей. Далее перемножаем полученное и получаем НОК.
нахождение общего знаменателя

НОК (15, 18) = 3 × 2 × 3 × 5 = 90

2. Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:

  • 90 : 15 = 6,
  • 90 : 18 = 5.

Полученные числа записываем справа сверху над числителем.
сложение дробей с разными знаменателями, запись дополнительных множителей.

3. Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению.
сложение дробей с разными знаменателями

4. Проверим полученный результат:

  • если делимое больше делителя, нужно преобразовать в смешанное число;
  • если есть что сократить, нужно выполнить сокращение.
    сокращение полученной дроби

Еще раз ход решения одной строкой:
пример сложения дробей

Сложение смешанных чисел

Сложение смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

1. Сложить целые части.
сложение смешанных чисел
сложение целых частей смешанных чисел

2. Сложить дробные части.
сложение дробей с разными знаменателями

Если знаменатели разные, воспользуемся знаниями из предыдущего примера и приведем к общему.

3. Суммируем полученные результаты.

Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

Прибавление и вычитание дробей — смежные темы: принципы и закономерности очень похожи. Чтобы закрепить знания, тренируйтесь решать примеры на сложение дробей как можно чаще.

 

Комментарии

Открыть диалоговое окно с формой по клику
Бесплатный вебинар
Бесплатный вебинар
Бесплатный вебинар
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2