Площадь круга: как найти, формулы

Внимательное наблюдение за объектами округлых форм успокаивает нервную систему: рябь на воде, кольца дыма. Из этой статьи вы узнаете, как устроена эта идеальная фигура, чему равна ее площадь и как ее высчитывать.
  • Автор

    Лидия Казанцева

  • Рубрика

    площадь, 6 класс, 9 класс, ЕГЭ/ОГЭ

  • Дата публикации

    23.07.2020

  • Просмотры

    203381

Определение основных понятий

Прежде чем погрузиться в последовательность расчетов и узнать, чему равна площадь круга, важно выяснить разницу между понятиями окружности и круга.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу.

Если говорить простым языком, окружность — это замкнутая линия, как, например, кольцо и шина. Круг — плоская фигура, ограниченная окружностью, как глобус и мяч.

Формула вычисления площади круга

Давайте разберем несколько формул расчета площади круга. Поехали!

Площадь круга через радиус

S = π × r2, где r — это радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.
радиус круга

Площадь круга через диаметр

S = π × d2 : 4, где d — это диаметр.
диаметр круга

Площадь круга через длину окружности

S = L2​ : (4 × π), где L — это длина окружности.
длина окружности

Важно!
Задачку не решить, если длина и ширина даны в разных единицах. Для правильного решения переведите все данные к одной единице измерения, и все получится.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм2);
  • квадратный сантиметр (см2);
  • квадратный дециметр (дм2);
  • квадратный метр (м2);
  • квадратный километр (км2);
  • гектар (га).

Задачи. Определить площадь круга

Мы разобрали три формулы для вычисления площади круга. А теперь тренироваться — поехали!

Задание 1. Как найти площадь круга по диаметру, если значение радиуса равно 6 см.

Как решаем:

  1. Диаметр окружности равен двум радиусам.

  2. Используем формулу: S = π × d2 : 4.

  3. Подставим известные значения: S = 3,14 × 122 : 4.

S = 113,04 см2.

Ответ: 113,04 см2.

Задание 2. Найти площадь круга, если известен диаметр, равный 90 мм.

Как решаем:

  1. Используем формулу: S = π × d2 : 4.

  2. Подставим известные значения: S = 3,14 × 902 : 4.

S = 6358,5 мм2.

Ответ: 6358,5 мм2.

Задание 3. Найти длину окружности при радиусе 3 см.

Как решаем:

  1. Отношение длины окружности к диаметру является постоянным числом.

    π = L : d

  2. Получается: L = d × π.

  3. Так как диаметр равен двум радиусам, то формула длины окружности примет вид: L = 2 × π × r.

  4. Подставим значение радиуса: L = 2 × 3,14 × 3.

L = 18,84 см2.

Ответ: 18,84 см2.



 

 
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0