Проверьте знания по математике бесплатно
Узнать бесплатно
Modal window id: popup-shopmath

Решение уравнений с дробями

Решение уравнений с дробями
695.6K

Порой кажется, что на уроках по математике чем дальше, тем сложнее. Но на самом деле все темы, как кирпичики: если разобрался с дробями и уравнениями — решать дробные уравнения будет легко. Об этом и расскажем. Поехали!

Для решения уравнений с дробями:

  • Определите область допустимых значений (ОДЗ) — числа, при которых знаменатели не равны нулю.
  • Найдите общий знаменатель дробей.
  • Умножьте обе части уравнения на общий знаменатель.
  • Приведите подобные слагаемые и решите уравнение.

Пример: .

Примеры решения:

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

        
  • обыкновенный вид — ½ или a/b,
  •     
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

        
  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2.     
  3. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Modal window id: popup-professionsbox

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Получи больше пользы от Skysmart:

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

        
  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  •     
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

                                                                                                 
Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.             

Что поможет в решении:

            
                    
  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  •                 
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  •                 
  • если а и b равны нулю, то корень уравнения — любое число.
  •             
            
Квадратное уравнение выглядит так:ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.


Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

неизвестная стоит в знаменателе пример дробно-рационального уравнения

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

пример линейного уравнения еще один пример линейного уравнения

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

разбираемое линейное уравнение

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решаем:

решение линейного уравнения

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

метод пропорции

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

исходное линейное уравнение

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

        
  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  •     
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

решение методом избавления

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

            
                    
  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  •                 
  • делить и умножать уравнение на 0 нельзя.
  •             

Универсальный алгоритм решения

            
                    
  1. Определить область допустимых значений.

  2.                 
  3. Найти общий знаменатель.

  4.                 
  5. Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

  6.                 
  7. Раскрыть скобки, если нужно и привести подобные слагаемые.

  8.                 
  9. Решить полученное уравнение.

  10.                 
  11. Сравнить полученные корни с областью допустимых значений.

  12.                 
  13. Записать ответ, который прошел проверку.

  14.             

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

Как решаем:

        
  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2.     
  3. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  4.     
  5. Избавимся от знаменателя. Умножим каждый член уравнения на х.     

    1 + 2x = 5х

        
  6.     
  7. Решим обычное уравнение.     

    5x — 2х = 1

        

    3x = 1

        

    х = 1/3

        

Ответ: х = 1/3.

Пример 2. Найти корень уравненияусловие уравнения

Как решаем:

        
  1. Область допустимых значений: х ≠ −2.
  2.     
  3. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  4.     
  5. Избавимся от знаменателя. Умножим каждый член уравнения на х.     

    пример 2, шаг 2

        
  6.     
  7. Переведем новый множитель в числитель..     

    пример 2, шаг 3

        
  8.     
  9. Сократим левую часть на (х+2), а правую на 2.     

    4 = х + 2

        

    х = 4 — 2 = 2

        

Ответ: х = 2.

Пример 3. Решить дробное уравнение: условие дробного уравнения

Как решаем:

        
  1. Найти общий знаменатель:     

    3(x-3)(x+3)

        
  2.     
  3. Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:     

    3(x+3)(x+3)+3(x-3)(x-3)=10(x-3)(x+3)+3*36

        
  4.     
  5. Выполним возможные преобразования. Получилось квадратное уравнение:     

    x2-9=0

        
  6.     
  7. Решим полученное квадратное уравнение:     

    x2=9

        
  8.     
  9. Получили два возможных корня:     

    x1=−3, x2=3

        

    х = 4 — 2 = 2

        
  10.     
  11. Если x = −3, то знаменатель равен нулю:     

    3(x-3)(x+3)=0

        

    Если x = 3 — знаменатель тоже равен нулю.

        
  12.     
  13. Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.

Ответ: нет решения.

 

Комментарии

Открыть диалоговое окно с формой по клику
Бесплатные шпаргалки
Бесплатные шпаргалки
Бесплатные шпаргалки
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2