Чтобы умножить десятичные дроби, нужно:
- умножить их, игнорируя запятые,
- подсчитать общее количество цифр после запятой в обеих дробях,
- отделить запятой столько цифр справа в результате.
Пример: 1.2 × 3.4 = 12 × 34 = 408, с учетом двух цифр после запятой: 4.08.
Понятие десятичной дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:
обыкновенный вид — ½ или a/b,
десятичный вид — 0,5.
В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
Вернемся к обыкновенным дробям позже, а сейчас обсудим десятичные дроби. Их знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
0,8
7,42
9,932
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Свойства десятичных дробей
Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:
0,600 = 0,6;
21,10200000 = 21,102.
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
Целая часть десятичной дроби равна целой части смешанной дроби. Если числитель меньше знаменателя, то она равна нулю.
Дробная часть десятичной дроби содержит те же цифры, что и числитель этой же дроби в обыкновенном виде, если знаменатель обыкновенной дроби равен 10, 100, 1000 и т. д.
Количество цифр после запятой зависит от количества нулей в знаменателе обыкновенной дроби, если знаменатель обыкновенной дроби равен 10, 100, 1000 и т. д. То есть 1 цифра — делитель 10, 4 цифры — делитель 10000.
Курсы обучения математике помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Получи больше пользы от Skysmart:
-
Прокачивай знания на курсах математики.
-
Выбирай из 1200+ репетиторов по математике.
Записывайся на бесплатные курсы для детей.
Как записать десятичную дробь
Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.
Пример 1. Перевести обыкновенную дробь
Как решаем:
Знаменатель равен 10 — это один ноль.
Отсчитываем справа налево в числителе дробной части один знак и ставим запятую.
В полученной десятичной дроби цифра 1 — целая часть, цифра 6 — дробная часть.
Ответ:
Пример 2. Перевести
Как решаем:
Знаменатель равен 1000 — это три нуля.
Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
Так как в числителе только две цифры, то на пустующие места пишем нули.
В полученной десятичной дроби цифра 0 — целая часть, 037 — дробная часть.
Ответ:
Как читать десятичную дробь
Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:
Сколько цифр после запятой? | Читается, как |
---|---|
одна цифра — десятых; | 1,3 — одна целая, три десятых; |
две цифры — сотых | 2,22 — две целых, двадцать две сотых; |
три цифры — тысячных; | 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных; |
четыре цифры — десятитысячных; | 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных; |
и т.д. |
Сохраняй наглядную картинку, чтобы быстрее запомнить.
Свойства умножения
С десятичными дробями можно производить те же действия, что и с любыми другими числами: складывать и вычитать, делить и умножать. В этом блоке узнаем, как умножать дроби.
Свойства умножения десятичных дробей |
---|
|
Умножение десятичных дробей друг на друга можно упростить и просто умножить натуральные числа. Главное — правильно поставить запятую в ответе.
Если в задаче даны десятичные дроби с разными знаками — используем правило умножения отрицательных чисел. Как быстро запомнить:
«−−» | минус на минус дает плюс |
«−+» | минус на плюс дает минус |
«+−» | плюс на минус дает минус |
«++» | плюс на плюс дает плюс |
Числа с единицей и нулями (10, 100, 1000 и т. д.) называются разрядными единицами, так как цифра 1 — единственная значимая цифра в числе и от ее местоположения зависит количественное значение числа. Важно запомнить правила для умножения и деления на разрядную единицу:
Чтобы умножить число на разрядную единицу, достаточно к числу справа дописать столько нулей, сколько их содержит разрядная единица.
Чтобы разделить число на разрядную единицу, достаточно от числа справа отбросить столько нулей, сколько их содержит разрядная единица.
Как умножать десятичные дроби в столбик
Чтобы перемножить десятичные дроби нужно сделать три шага:
Записать десятичные дроби в столбик и умножить друг на друга, как обыкновенные числа.
Посчитать количество знаков после запятой у каждой дроби. Сложить их количество.
Полученное количество знаков отсчитать справа налево и поставить запятую.
Пример: умножить 3, 11 на 0,01.
Как решаем:
Запишем дроби в столбик и умножим их, как будто у нас нет никаких запятых:
Получаем: 311 ∗ 001 = 311.
Считаем общее количество цифр после запятой у обеих дробей — в нашем примере их четыре (по две на каждую).
Берем число, которое получилось после умножения и отсчитываем справа налево 4 знака. Но у нас получилось всего три цифры, а не четыре. Значит добавляем перед ними один ноль и вуаля — четыре цифры после запятой готовы
Ответ: 3,11 ∗ 0,01 = 0,0311.
Примеры умножения десятичных дробей столбиком: |
---|
Как умножать десятичные дроби на натуральные числа
Умножение десятичных дробей на целое число - это процесс, при котором нужно:
- Умножить дробь на число, игнорируя запятую.
- В произведении отделить запятой столько цифр справа, сколько их после запятой в десятичной дроби.
Пример:
3.14 × 2 = 6.28
Умножение десятичных дробей на обычные числа происходит так же, как и умножение между десятичными дробями. Чтобы считать быстрее, умножайте их в столбик по правилам выше. А вот и примерчики!
Пример 1. Умножить десятичную дробь 2,27 на целое число 15.
Как решаем:
умножить столбиком данные числа и отделить два знака запятой.
Ответ: 15 ∗ 2,27 = 34,05.
Пример 2. Умножить 11 на 0,005.
Как решаем:
умножить столбиком данные числа и отделить три знака запятой.
Ответ: 11 ∗ 0,005 = 0,055.
Пример 3. Умножить 0,1557.. на 3.
Как решаем:
Округлить бесконечную дробь:
0,1557..≈ 0,156
0,156 * 3 ≈ 0,468.
Ответ: 0,1557.. ∗ 3 ≈ 0,468.
Как умножать десятичные дроби на 10, 100, 1000
Чтобы умножить десятичную дробь на 10, 100, 1000, нужно просто перенести запятую в дроби вправо на столько знаков, сколько нулей стоит во втором множителе. Лишние нули слева можно отбросить. А если цифр не хватает — дописываем нули.
Примеры:
1,15 ∗ 10 = 11,5;
22,345 ∗ 100 = 2 234,5;
8,99 ∗ 1 000 = 8 990;
0,54678 ∗ 10 000 = 5467,8;
0,07 ∗ 1 000 = 70;
0,00033 ∗ 100 = 0,033.
Как умножать десятичные дроби на 0,1, 0,01, 0,001
Чтобы умножить десятичную дробь на 0,1, 0,01, 0,001, нужно перенести запятую в дроби влево на столько знаков, сколько нулей стоит перед единицей. Ноль целых — тоже считаем. Если цифр не хватает — просто дописываем дополнительный ноль — один или несколько — после запятой.
Примеры:
34,9 ∗ 0,1 = 3,49;
1,8 ∗ 0,1 = 0,18;
145,7 ∗ 0,01 = 1,457;
9655,1 ∗ 0,001 = 9,6551;
11,9 ∗ 0,0001 = 0,00119.
Как умножить десятичную дробь на обыкновенную
Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.
Пример 1. Умножить
Как решаем:
-
Записать 0,9 в виде обыкновенной дроби:
-
Ответ:
Пример 2. Умножить 0,18 на
Как решаем:
-
Записать
-
Произвести умножение в столбик или при помощи калькулятора:
Ответ: