b733e4
Проверьте знания по математике бесплатно
Узнать бесплатно
Modal window id: popup-shopmath

Что такое квадратный корень

Что такое квадратный корень
460.9K

Казалось бы, алгебра ничем уже не может удивить бывалого восьмиклассника. Но у нее в рукаве есть козырь — квадратный корень. Давайте разберемся, что это такое и как выполнять действия с корнями.

Чтобы считать корни, используйте следующую формулу: если (a) можно представить в виде , то .

  • Например, для квадратного корня: , потому что .
  • Для кубического корня: , потому что .

Что такое квадратный корень

Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:

Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.

Определение квадратного корня также можно представить в виде формул:

Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.

Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.

Попробуем найти корень из

Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.

Если - 4, то -4 * -4 = 16, (минус на минус всегда дает плюс).

Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.

Числа, стоящие под знаком корня, должны быть положительными.

Исходя из определения, значение корня также не должно быть отрицательным

Здесь могут возникнуть резонные вопросы, почему, например, в примере , и .

Modal window id: popup-professionsbox

Разница между квадратным корнем и арифметическим квадратным уравнением

Прежде всего, чтобы разграничить эти два понятия, запомните:

  • не равно .

Это два нетождественных друг другу выражения.

  • — это квадратное уравнение.

  • — арифметический квадратный корень.

Из выражения следует, что:

  • , это значит, что , , .

Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.

В то же самое время, из выражения следует, что .

Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:

 
  1. Пример решен неверно

  2. Это квадратное уравнение.

Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.

Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.

Даны два выражения: 

 

Первое выражение — квадратное уравнение.

.

Второе выражение — арифметический квадратный корень. 

.

Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.

Получи больше пользы от Skysmart:

Запись иррациональных чисел с помощью квадратного корня

Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.

Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.

Примеры иррациональных чисел:

;

;

.

Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.

Дано уравнение: .

Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит. 

Переберем числа, чтобы удостовериться в этом:

,

,

.

Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.

Решение следующее:
Строим график функции y = x2.
Отмечаем решения на графике: .

 график функции y = x2

Если попробовать извлечь квадратный корень из 2 с помощью калькулятора, то результат будет следующий: .

В таком виде ответ не записывают — нужно оставить квадратный корень.

.

.

Извлечение корней

Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.

Таблица квадратов

0 1 2 3 4 5 6 7 8 9
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:

  • 1. Извлеките квадратный корень:

Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.

Влево — 1, вверх — 7.

Ответ: .

  • 2. Извлеките квадратный корень:

Ищем в таблице число 3025.
Влево — 5, вверх —  5.

Ответ: .

  • 3. Извлеките квадратный корень:

Ищем в таблице число 7396.

Влево — 8, вверх — 6.

Ответ: .

  • 4. Извлеките корень:

Ищем в таблице число 9025.

Влево — 9, вверх — 5.

Ответ: .

  • 5. Извлеките корень

Ищем в таблице число 1600.

Влево — 4, вверх — 0.

Ответ: .

Извлечением корня называется нахождение его значение.

Свойства арифметического квадратного корня

У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.

  • Корень произведения равен произведению корней

  • Извлечь корень из дроби — это извлечь корень из числителя и из знаменателя

  • Чтобы возвести корень в степень, нужно возвести в степень значение под корнем

Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.

Умножение арифметических корней

Для умножения арифметических корней используйте формулу:

Примеры:

  1. Ответ:

  2. Ответ:

Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.

Если нет возможности извлечь корни из чисел, то поступаем так:

 
  1. Ответ:

  2. Ответ:

  3. Если множителей больше двух, то решается примерно точно так, как и с двумя множителями:

    Ответ:

Добрая напоминалочка
Чтобы решать примеры быстрее, не забывайте пользоваться таблицей квадратов.

  1. Ответ:

Деление арифметических корней

Для деления арифметических корней используйте формулу:

Примеры:

  1. Ответ: смешанную дробь превращаем в неправильную (16 * 3) + 1 = 49

  2. Ответ:

  3. Ответ:

Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.

Возведение арифметических корней в степень

Для возведения арифметического корня в степень используйте формулу:

Примеры:

  1. Ответ: , т.к.

  2. Ответ: , т.к. .

Эти две формулы нужно запомнить:

  1. Ответ:

  2. Ответ:

Повторите свойства степеней или запишитесь на курсы по математике, чтобы без труда решать такие примеры.

Внесение множителя под знак корня

Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.

А теперь давайте разберемся, как вносить множитель под знак корня.

Дано выражение:

Число семь умножено на квадратный корень из числа девять. 

Извлечем квадратный корень и умножим его на 7.

.

В данном выражение число 7 — множитель. Давайте внесем его под знак корня. 

Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.

Вы помните, что

Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.

Формула внесения множителя под знак корня:

Запоминаем:
Нельзя вносить отрицательные числа под знак корня.

Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.

 
  1. Ответ:


  2. Ответ:


  3. Ответ:

Вынесение множителя из-под знака корня 

С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.

Дано выражение в виде квадратного корня из произведения.

Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.

Извлекаем корень из всех имеющихся множителей.

В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:

Таким образом множитель выносится из-под знака корня.

Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.

  1. Раскладываем подкоренное выражение на множители 28 = 7*4.

    Извлекаем корень из 4. Множитель 7 оставляем под знаком корня.

    Ответ:

  2. Ответ: по правилу извлечения квадратного корня из произведения,

    .

    Так как вынесенный множитель должен стоять перед подкоренным знаком, то меняем их местами.

    .

  3. Вынесите множитель из-под знака корня в выражении:

    Ответ: Раскладываем выражение под корнем на множители 24 = 6 * 4.

  4. Упростите выражение: .

    Представим в виде

    Представим в виде

    Тогда

    Вынесем в двух последних выражения множитель из-под знака корня.

    Умножаем . Все остальное выражение записываем в неизменном виде.

    Мы видим, что во всем выражении есть один общий множитель — .

    Выносим общий множитель за скобки:

    Далее вычисляем все, что в скобках:

Сравнение квадратных корней

Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.

Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.

Если:

  • , то

  • , то

Давайте разберем на примере.

Сравните два выражения: и

Первым делом преобразуем второе выражение: .

.

Это значит, что .

Запоминаем
Чем больше число под знаком корня, тем больше сам корень.

Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.

  1. Сравните два выражения: и

    Ответ: преобразовываем выражение .

    Это значит, что .

  2. Сравните два выражения: и

    Ответ: преобразовываем выражение .

    Это значит, что .

  3. Сравните два выражения: и

    Ответ: преобразовываем выражение .

    Это значит, что .

Как видите, ничего сложного в сравнении арифметических квадратных корней нет. 

Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.

Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.

Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее. 

Таких калькуляторов в интернете много, вот один из них.

Извлечение квадратного корня из большого числа

Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.

Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.

Еще одна таблица квадратов

Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:

  1. Определить «сотни», между которыми оно стоит.

  2. Определить «десятки», между которыми оно стоит.

  3. Определить последнюю цифру в этом числе.

Извлечь корень из большого числа можно разными способами — вот один из них.

Извлечем корень из .

Наша задача в том, чтобы определить между какими десятками стоит число 2116.

102 = 100

202 = 400

302 = 900

402 = 1600

502 = 2500 

Мы видим что, 2116 больше 1600, но меньше 2500.

Это значит, что число 2116 находится между 402и 502.

41, 42, 43, 44, 45, 46, 47, 48, 49.

Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.

Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.

лайфхак по вычислению всего на свете, что нужно возвести в квадрат

Как пользоваться таблицей

12 = 1

22 = 4

32 = 9

42 = 16 ⇒ 6

52 = 25 ⇒ 5

62 = 36 ⇒ 6

72 = 49 ⇒ 9

82 = 64 ⇒ 4

92 = 81 ⇒ 1

Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.

Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.

Число 43, возведенное в квадрат, даст число, на конце которого — 9.

Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.

Таким образом, у нас остаются два варианта: 442 и 462.

Далее вычисляем: 44 * 44 = 1936.

46 * 46 = 2116.

Ответ:

Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат. 

Еще пример. Извлечем корень из числа

Разложим число 11664 на множители: 

11664 : 4 = 2916

2916 : 4 = 729

729 : 3 = 243

243 : 3 = 81

11664

4

2916

4

729

3

243

3

81

81

Запишем выражение в следующем виде:

Ответ:

Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.

Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.
 

  • 1. Вычислите значение квадратного корня:

    Как решаем:

    Ответ: 6.

  • 2. Вычислите значение квадратного корня:

    Как решаем:

    Ответ: .

  • 3. Вычислите значение квадратного корня:

    Как решаем:

    Ответ: .

  • 4. Вычислите значение квадратного корня:

    Как решаем:

    Ответ: .

  • 5. Вычислите значение квадратного корня:

    Как решаем:

    Ответ: .

  • 6. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 7. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 8. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 9. Вычислите значение квадратного корня:

    Как решаем:

    Ответ:

  • 10. Вычислите значение квадратного уравнения:

    Как решаем:

    Ответ: .

  • 11. Вычислите значение квадратного уравнения:

    Как решаем:

    Ответ: .

  • 12. Извлеките квадратный корень из числа удобным вам способом

    Как решаем:

    7056

    4

    1764

    4

      441

    3

      147

    3

        49

    7

          7

    7

          1

    Ответ:

  • 13. Вычислите значение квадратного корня

    Ответ:

  • 14. Вычислите значение квадратного корня:

    Как решаем:

  • 15. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 16. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 17. Вычислите значение выражения:

    Как решаем:

  • 18. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 19. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 20. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 21. Вынесите множитель из-под знака корень:

    Как решаем:

    Ответ: .

  • 22. Вынесите множитель из-под знака корень:

    Как решаем:

    Ответ: .

  • 23. Внесите множитель под знак корня:

    Как решаем:

    Ответ: .

  • 24. Внесите множитель под знак корня:

    Как решаем:

    Ответ: .

  • 25. Внесите множитель под знак корня:

    Как решаем:

    Ответ: .

  • 26. Упростите выражение:

    Как решаем:

    Ответ: .

  • 27. Вычислите значение выражения:

    Как решаем:

    Ответ: .

  • 28. Вычислите значение квадратного корня:

    Как решаем:

    Ответ: .

  • 29. Вычислите значение квадратного корня:

    Как решаем:

    Ответ: .

  • 30. Найдите значение выражения:

    Как решаем:

    Ответ: .

 

Комментарии

Открыть диалоговое окно с формой по клику
Бесплатные шпаргалки
Бесплатные шпаргалки
Бесплатные шпаргалки
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2