b733e4
Проверьте знания по математике бесплатно
Узнать бесплатно
Ваш ребёнок технарь или гуманитарий?

Узнайте бесплатно за 10 минут

Модуль числа, калькулятор модуля

Модуль числа, калькулятор модуля
479.5K

Разберем сегодня, что значит модуль числа, как считать модуль и как обозначается модуль в математике. А также его свойства и, конечно же, примеры.

Для кого эта статья:

  • Студенты и школьники, изучающие математику
  • Программисты и разработчики, работающие с числами и математическими операциями
  • Любые заинтересованные лица, желающие узнать о модулях и их применении

Онлайн-калькулятор модуля числа

Modal window id: popup-development

Определение модуля числа

Алгебра дает четкое определение модуля числа. Модуль числа в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.

Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой A — расстояние от точки A до начала отсчёта (то есть до нуля) длина отрезка OA будет называться модулем числа «a».

Знак модуля: |a| = OA.

Разберем на примере:
пример определения модуля числа

Точка В, которая соответствует числу −3, находится на расстоянии 3 единичных отрезков от точки O (то есть от начала отсчёта). Значит, длина отрезка OB равна 3 единицам.

Число 3 (длину отрезка OB) называют модулем числа −3.

Обозначение модуля: |−3| = 3 (читают: «модуль числа минус три равен трём»).

Точка С, которая соответствует числу +4, находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка OС равна четырем единицам.

Число 4 называют модулем числа +4 и обозначают так: |+4| = 4.

Также можно опустить плюс и записать значение, как |4| = 4.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Получи больше пользы от Skysmart:

Свойства модуля числа

Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.

1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:

  • |a| > 0 

2. Модуль положительного числа равен самому числу.

  • |a| = a, если a > 0

3. Модуль отрицательного числа равен противоположному числу.

  • |−a| = a

4. Модуль нуля равен нулю.

  • |0| = 0, если a = 0

5. Противоположные числа имеют равные модули.

  • |−a| = |a| = a

6. Модуль произведения равен произведению модулей этих чисел.

  • |a b| = |a| |b|, когда

a · b = 0

или

−(a · b), когда a · b < 0

7. Модуль частного равен частному от деления модуля числа числителя на модуль числа знаменателя: 

  • 7 свойство модуля числа

Геометрическая интерпретация модуля

Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.

Нарисуем числовую прямую и отобразим это на ней.
числовая прямая с модулем числа

Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.

Решим уравнение: |х| = 5.

Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.

Когда у нас есть два числа a и b, то их разность |a - b| равна расстоянию между ними на числовой прямой или длине отрезка АВ.

длина отрезка АВ

Расстояние от точки a до точки b равно расстоянию от точки b до точки a, тогда |a - b| = |b - a|.

Решим уравнение: |a - 3| = 4 . Запись читаем так: расстояние от точки а до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

решение заданного уравнения

Уравнение имеет два решения: −1 и 7. Мы из 3 вычли 4 - и это один ответ, а также к 3 мы прибавили 4 - и это второй ответ.

Решим неравенство: |a + 7| < 4.

Эту запись читаем так: расстояние от точки a до точки −7 меньше четырех. Отмечаем на числовой прямой точки, удовлетворяющие этому условию:

Решение неравенства 1

Ответ в данном случае будет таким: (−11; −3).

Решим неравенство: |10 − x| ≥ 7.

Расстояние от точки 10 до точки x больше или равно семи. Отметим эти точки на числовой прямой.

Решение неравенства 2

Ответ: (−∞; 3] [17, +∞).

График функции

График функции равен y = |х|.

Для x > 0 имеем y = x. 

Для x < 0 имеем y = −x. В результате получаем:
График функции

Этот график можно использовать при решении уравнений и неравенств.

Корень из квадрата

В контрольной работе или на ЕГЭ может встретиться задачка, в которой нужно вычислить a2 , где a – некоторое число или выражение.

При этом, a2= |a|.

По определению арифметического квадратного корня a2 — это такое неотрицательное число, квадрат которого равен a2

Оно равно a при а > 0 и −а, при а < 0 , т. е. как раз |a|.

Модуль рационального числа

Как найти модуль рационального числа — это расстояние от начала отсчёта до точки координатной прямой, которая соответствует этому числу.

Модуль рационального числа, примеры:

|-3,5| = 3,5

|2,27| = 2,27

пример модуля рационального числа

 

Комментарии

Открыть диалоговое окно с формой по клику
Бесплатные шпаргалки
Бесплатные шпаргалки
Бесплатные шпаргалки
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2