b733e4
Проверьте знания по математике бесплатно
Узнать бесплатно
Открыть диалоговое окно с формой по клику

Показательные неравенства

Показательные неравенства
122.5K

Как правило, показательные неравенства начинают изучать после того, как уже познакомились с показательными уравнениями. Если знакомство прошло успешно и уравнения вам теперь как родные, этот материал будет во многом повторением пройденного. Но это не значит, что вы не увидите ничего нового — в решении показательных неравенств есть свои фишки.

Определение показательных неравенств

Показательными считаются неравенства, которые включают в себя переменную, стоящую в показателе степени: .

Из них показательно-степенными неравенствами являются те, в которых есть переменные и в показателе степени, и в основании.

Для изучения этой темы стоит повторить:

И, конечно, для решения смешанных неравенств, включающих в себя тригонометрические и логарифмические, также придется вспомнить формулы соответствующих разделов алгебры.

Если все это еще свежо в памяти, давайте приступим. Как и к показательным уравнениям, к неравенствам стоит подходить, помня о свойствах показательной функции. Напомним, что она выглядит так: y = ax, где a > 0 и a ≠ 1. Два графика ниже дают представление о том, на что похожа такая функция, когда основание степени а положительно, но не равно единице. Наверняка вы уже догадались, каково главное свойство этой функции. Да, она монотонна.

При этом заметьте — значения функции всегда больше нуля. На практике в этом несложно убедиться, если возводить какое-либо число (большее нуля) во всевозможные степени, включая отрицательные. Например: 2-2 = 4, 2-4 = 1/16 и т. д. Значение функции будет уменьшаться, но никогда не достигнет нуля.

Для любых а и х верно неравенство ax > 0, т. е. показательная функция не принимает отрицательных значений.

Запишем следствие монотонности показательной функции в виде формул:

  • , когда функция возрастает, т. е. ;

  • , когда функция убывает, т. е. .

На этом свойстве показательных неравенств так или иначе основываются все методы решения, и сейчас мы разберемся, как им пользоваться.

Modal window id: popup-salary

Как решать показательные неравенства

Как мы уже говорили, для успешного освоения этой темы нужно хорошенько повторить все, что касается показательных уравнений. Способы решения показательных неравенств выглядят примерно так же — мы будем пытаться упростить выражение, получить одинаковые степени или одинаковые основания, по возможности свести все к квадратному или рациональному уравнению. Но есть и свои тонкости...

Допустим, у нас есть простейшее показательное неравенство:

3х > 9

Если вы помните, как решались показательные уравнения, не придется долго думать, что делать с таким неравенством — приведем его к одинаковому основанию:

3х > 32

х > 2

Казалось бы, все логично, но всегда ли можно смело вычеркивать одинаковые основания степеней? А что, если вместо 3 у нас основание степени будет 0,5? Посмотрим:

0,5х > 0,52

Проверим, верно ли в таком случае х > 2.

0,52 = 0,25;

0,53 = 0, 125 и т. д.

Как видите, на самом деле в этом случае х < 2. Неудивительно, если вспомнить, о чем мы писали в самом начале, когда рисовали графики возрастающей и убывающей показательной функции.

Если а > 1, то , и при решении неравенства можно просто убрать одинаковые основания степени.

Если 0 < а < 1, то , т. е. одинаковые основания по-прежнему можно убрать, но при этом необходимо поменять знак неравенства.

Для ясности всегда предполагается, что основание степени — положительное число.

Это были общие правила, а сейчас рассмотрим разные виды показательных неравенств и примеры с решениями.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Получи больше пользы от Skysmart:

Показательные неравенства, сводящиеся к простейшим

Решая показательные уравнения, вы наверняка первым делом исследовали их на возможность приведения к одинаковым основаниям или одинаковым степенным функциям. Так вот, с неравенствами можно делать то же самое! Помните лишь о смене знака, если основание степени меньше единицы. 😎

Попробуем на примере несложного показательного неравенства с разными основаниями.

Пример 1

3х < 243

3х < 35

Поскольку 3 больше 1, знак не меняем:

х < 5

Ответ: х ∈ (−∞; 5).

Пример 2

, обратите внимание — мы поменяли знак, поскольку .

Ответ: .

Modal window id: popup-job

Показательные неравенства, сводящиеся к квадратным

Снова давайте вспомним, как аналогичный метод применялся к показательным уравнениям. Если все переменные имели общий множитель, его можно было обозначить новой переменной — в итоге у нас, как правило, получалось квадратное уравнение. Нужно было лишь найти дискриминант и произвести обратную замену. И снова алгоритм решения показательных неравенств будет совершенно таким же.

Пример 1

9х + 27 < 12 × 3х

Наименьший общий множитель в данном случае будет 3х, обозначим его новой переменной у и перенесем все слагаемые в левую сторону.

9х + 27 < 12 × 3х

(3х)2- 12 × 3х + 27 < 0

3х = у при y > 0

y2 - 12y + 27 < 0

3 < y < 9

Пришло время выполнить обратную замену.

3 < 3х < 9

31 < 3х < 32

Поскольку 3 > 1, мы не меняем знак.

1 < х < 2

Ответ: х ∈ (1;2).

Modal window id: popup-dorm

Показательные неравенства, сводящиеся к рациональным

Как вы, наверное, помните из предыдущего курса алгебры, рациональные показательные неравенства — это такие, в которых левая и правая часть представляют собой дробно-рациональные функции. Метод их решения таков: нужно перенести все в левую часть, чтобы в правой остался лишь ноль, и привести к общему знаменателю. Далее решаем уравнение, отмечаем все корни на оси и применяем метод интервалов (если забыли, что это такое — повторите).

Важно помнить: если в числителе и знаменателе встретятся одинаковые множители с переменной, сокращать их нельзя.

Пример 1

Преобразуем неравенство:

(обратите внимание, мы избавились от минуса в числителе и поменяли знак неравенства).

Поскольку выражение 2х + 2 всегда больше нуля, мы можем домножить на него все неравенство и сократить.

и

Ответ:

Пример 2

Обозначим 3х через новую переменную y:

3х = y, при условии что y > 0.

Применим метод интервалов и получим:

Произведем обратную замену:

Поскольку 3 больше 1, знаки не меняем:

Ответ: .

Однородные показательные неравенства

Однородными называются такие показательные неравенства, где в каждом слагаемом сумма степеней одинакова.

Иногда такие выражения бывают очень длинными и запутанными, но не стоит этого пугаться. Практически все неравенства с однородными показательными функциями решаются по одному принципу: стараемся упростить выражение, разделив его на одночлен, а затем при необходимости делаем замену переменных.

Пример 1

В левой части неравенства мы видим однородные функции относительно 2х и 5х. Следовательно, можно разделить обе части на 2 или 5. Выберем 5, т. е. 25х. В итоге у нас получится:

Если обозначить новой переменной y (при условии, что y > 0), получим квадратное неравенство:

y2- y - 2 > 0

y1 > 2

y2 < -1

Исходя из этого, у нас образуется следующее неравенство:

Поскольку меньше 1, функция убывающая и мы должны поменять знак:

Ответ: .

Пример 2

Но где здесь одинаковая сумма степеней? Сейчас будет:

Ответ:

Неравенства, решаемые графическим методом

Этот метод решения показательных неравенств — самый наглядный, и для многих он может показаться самым простым. Нужно лишь построить графики функций, заданных в левой и правой части выражения, а затем посмотреть, в какой точке они пересекаются. Но для использования данного метода точки пересечения должны быть целыми числами. Если бы мы имели дело с уравнением, такие точки стали бы его корнями.

Но поскольку мы рассматриваем неравенства, нужно будет выделить искомую область. Для неравенства f(x) > g(x) это будет та область, где график функции f(x) находится выше.

Пример 1

Итак, нам нужны графики двух функций: и , а также точка их пересечения.

Очевидно, что абсциссой точки пересечения является х = 1, при этом график функции ниже в области .

Ответ: .

Пример 2

Начертим графики этих двух функций, чтобы найти точку пересечения.

Искомой точкой будет х = -1, а областью, где функция находится выше — диапазон значений х от -∞ до -1.

Ответ: .

Бесплатный вебинар
Бесплатный вебинар
Бесплатный вебинар
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2