Теория вероятностей, формулы и примеры

Есть три группы событий: достоверные, невозможные и случайные. Часть из них можно объяснить при помощи математики и других точных наук. В этом материале расскажем про теорию вероятностей, рассмотрим формулы и примеры решения задач.
  • Автор

    Лидия Казанцева

  • Дата публикации

    17.12.2020

  • Просмотры

    52980

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.


понятия

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.

Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие. 

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:

 
  1. Дискретная случайная величина — величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, то есть образовывать счетное множество.

    Элементы множества можно пронумеровать. Они могут быть как конечными, так и бесконечными. Например: количество выстрелов до первого попадания в цель.

  2. Непрерывная случайная величина — это такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Количество возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.

Вероятностное пространство — это тройка (Ω, Σ, Ρ) иногда обрамленная угловыми скобками: ⟨ , ⟩ , где

  • Ω — это множество объектов, которые называют элементарными событиями, исходами или точками.
  • Σ — сигма-алгебра подмножеств , называемых случайными событиями;
  • Ρ — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

 

Подготовиться к олимпиаде или вузу и поверить в себя помогут внимательные учителя онлайн-школы Skysmart.

Приходите на бесплатный вводный урок математики: порешаем увлекательные задачки и наметим индивидуальную программу обучения.

Формулы по теории вероятности

Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.

Случайные события. Основные формулы комбинаторики


Основные формулы комбинаторики

Классическое определение вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A

Свойства вероятности:

  • Вероятность достоверного события равна единице.
  • Вероятность невозможного события равна нулю.
  • Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству:

  • 0 ≤ P(A) ≤ 1.

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Как рассуждаем:

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

P = 0/15 = 0

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное. 

Ответ: 0.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Как рассуждаем:

Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m). 

Следовательно:


Пример

Ответ: 0,25.

Геометрическое определение вероятности

Геометрическая вероятность события А определяется отношением:

P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно

Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.

Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?

Как решаем:

 
  1. A — встреча с другом состоится, х и у — время прихода. Значит:
    0 ≤ х, у ≤ 60.

  2. В прямоугольной системе координат этому условию удовлетворяют точки, которые лежат внутри квадрата ОАВС. Друзья встретятся, если между моментами их прихода пройдет не более 5 минут, то есть: 

    y−x < 5, y > x

    x−y < 5, x > y.

  3. Этим неравенствам удовлетворяют точки из области G — то, что выделено красным:
    График для задачи на вероятности

  4. Тогда вероятность встречи равна отношению площадей области G и квадрата:

    P(A)=SG/SOABC= 60 * 60 - 55 * 5560 * 60 = 23144 = 0,16

Ответ: 0,16

У нас есть отличное онлайн обучение по математике для учеников с 1 по 11 классы, записывайся на пробное занятие!

Сложение и умножение вероятностей

Немного теории:

  • Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В можно записать так: A ⊂ B.
  • События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается так: А = В.
  • Суммой событий А и В называется событие А + В, которое наступает тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B)

Эта теорема справедлива для любого числа несовместных событий:


теорема о сложении вероятностей

Если случайные события A1, A2,..., An образуют полную группу несовместных событий, то справедливо равенство: 

  • P(A1) + P(A2) + … + P(An) = 1. Такие события (гипотезы) используют при решении задач на полную вероятность.

Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:

P(A + B) = P(A) + P(B) − P(AB)

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:

P(AB) = P(A) * P(B)

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.

Найдем вероятности того, что формула содержится:

  1. только в одном справочнике;
  2. только в двух справочниках;
  3. во всех трех справочниках.

Как рассуждаем:

А — формула содержится в первом справочнике;

В — формула содержится во втором справочнике;

С — формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

 
  1. Первый шаг решения уравнения

  2. Второй шаг решения уравнения

  3. Третий шаг решения уравнения

Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.

Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий B1, B2, ..., Bn, которые образуют полную группу несовместных событий — вероятность события А вычисляется по формуле полной вероятности:

формула полной вероятности и формула Байеса

Вновь рассмотрим полную группу несовместных событий B1, B2, ..., Bn, вероятности появления которых P(B1), P(B2), ..., P(Bn). Событие А может произойти только вместе с каким-либо из событий B1, B2, ..., Bn, которые называются гипотезами. Тогда по формуле полной вероятности: если событие А произошло — это может изменить вероятности гипотез P(B1), P(B2), ..., P(Bn).

По теореме умножения вероятностей:


Пример решения по теории вероятностей

откуда


Решение по формуле

Аналогично, для остальных гипотез:


формула

Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.

Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Как рассуждаем:

  1. Возможны три гипотезы:
    • А1 — на линию огня вызван первый стрелок,
    • А2 — на линию огня вызван второй стрелок,
    • А3 — на линию огня вызван третий стрелок.

  2. Так как вызов на линию огня любого стрелка равно возможен, то
    Первый шаг решения задачи

  3. В результате опыта наблюдалось событие В — после произведенных выстрелов мишень не поражена. Условные вероятности этого события при наших гипотезах равны:
    Второй шаг решения задачи

  4. По формуле Байеса находим вероятность гипотезы А1 после опыта:
    Третий шаг решения задачи

Ответ: 0,628.

Формула Бернулли

При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

  • Бросаем игральный кубик, где вероятности выпадения определенной цифры одинаковы в каждом броске.
  • Включаем лампы с заранее заданной одинаковой вероятностью выхода из строя каждой.
  • Лучник повторяет выстрелы по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой.

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.

 
  1. Обозначим вероятность появления события А в единичном испытании буквой р, значит:

    p = P(A), а вероятность противоположного события (событие А не наступило) - буквой q

    q = P(¯A) = 1 - p.

  2. Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли:

    Pn(k) = Cnk * pk * qn-k, где q = 1 - p.

Биномиальное распределение — распределение числа успехов (появлений события).

Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.

Как рассуждаем:

Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
формула

Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂

Наивероятнейшее число успехов

Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:

np - q ≤ k ≤ np + p, где q=1−p

Так как np−q = np + p−1, то эти границы отличаются на 1. Поэтому k, являющееся целым числом, может принимать либо одно значение, когда np целое число (k = np), то есть когда np + p (а отсюда и np - q) нецелое число, либо два значения, когда np - q целое число.

Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.

Как решаем:

 
  1. По условию дано: n = 730, p = 1/365, g = 364/365

  2. np - g = 366/365

  3. np + p = 731/365

  4. 366/365 ≤ m ≤ 731/365

  5. m = 2

Ответ: 2.

Формула Пуассона

При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97999 вычислить весьма затруднительно.

В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:

Формула Пуассона

Здесь λ = np обозначает среднее число появлений события в n испытаниях.

Эта формула дает удовлетворительное приближение для  p ≤ 0,1 и np ≤10.

События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).

При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.

Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

Как решаем:

 
  1. По условию дано: n = 1000, p = 0,002, λ = np = 2, k = 3.

  2. Искомая вероятность после подстановки в формулу:

P1000(3) = λ3/3! * e−λ =  23/3! * e−2 ≈ 0,18.

Ответ: ориентировочно 0,18.

Теоремы Муавра-Лапласа

Пусть в каждом из n независимых испытаний событие A может произойти с вероятностью p, q = 1 - p (условия схемы Бернулли). Обозначим как и раньше, через Pn(k) вероятность ровно k появлений события А в n испытаниях.

Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.

Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то


Локальная теорема Лапласа

где —


Функция гаусса

функция Гаусса.

Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то


Интегральная теорема Лапласа

где


функция Лапласа

— функция Лапласа.

Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:

  • Функция Гаусса и Лапласа
  • при больших x верно Формула

Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.

Если ребенку наскучила школьная программа и он готов осваивать что-то поинтереснее — приходите в школу Skysmart. Мы подготовили тысячи увлекательных задачек разной сложности, чтобы ребенок развивался в комфортном темпе.

Записывайтесь на бесплатный вводный урок математики и начните заниматься по индивидуальной программе уже завтра.

 
Бесплатный вводный урок
Шаг 1 из 2. Данные ученика
Класс
Цель обучения
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0