Определение квадратного неравенства
Неравенство — алгебраическое выражение, в котором используются знаки ≠, <, >, ≤, ≥.
Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти множество, для которых оно выполняется.
Квадратное неравенство выглядит так:
где x — переменная,
a, b, c — числа,
при этом а ≠ 0.
Квадратное неравенство можно решить двумя способами:
- графический метод;
- метод интервалов.
Решение неравенства графическим методом
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.
Как дискриминант влияет на корни уравнения:
- D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;
- D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два различных корня;
- D < 0. Если дискриминант меньше нуля, тогда у квадратного уравнения нет корней.
В зависимости от полученных корней и знака коэффициента a, возможно одно из шести расположений графика функции у = ax2 + bx + c.
Если требуется найти числовой промежуток, на котором квадратный трехчлен ax2 + bx + c больше нуля, то этот числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если нужно найти числовой промежуток, на котором квадратный трехчлен ax2 + bx + c меньше нуля — это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток. А если строгое — не входят.
Обучение на курсах по математике в онлайн-школе Skysmart сделает сложные темы понятными, а высокий балл на экзаменах — достижимым!
Получи больше пользы от Skysmart:
-
Подготовься к ОГЭ на пятёрку.
-
Подготовься к ЕГЭ на высокие баллы.
Записывайся на бесплатные курсы для детей.
Решай задания в бесплатном тренажёре ЕГЭ.
Решение неравенства методом интервалов
Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.
Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, <, ≤, ≥.
Сейчас мы узнаем про интервалы в контексте решения квадратных неравенств.
Интервал — это некий промежуток числовой прямой, то есть все возможные числа, заключенные между двумя числами — концами интервала. Представить эти промежутки не так просто, поэтому интервалы принято рисовать.
Алгоритм решения квадратных неравенств методом интервалов:
- Найти нули квадратного трехчлена ax2 + bx + c из левой части квадратного неравенства.
- Изобразить координатную прямую и при наличии корней отметить их на ней.
Если неравенство строгое, нужно отметить корни пустыми (выколотыми) точками. Если нестрогое — обычными точками. Именно эти точки разбивают координатную ось на промежутки.
- Определить, какие знаки имеют значения трехчлена на каждом промежутке (если на первом шаге нашли нули) или на всей числовой прямой (если нулей нет). И проставить над этими промежутками + или − в соответствии с определенными знаками.
- Если квадратное неравенство со знаком > или ≥ — наносим штриховку над промежутками со знаками +.
Если неравенство со знаком < или ≤, то наносим штриховку над промежутками со знаком −.
В результате получаем геометрический образ некоторого числового множества — это и есть решение неравенства.
Либо вместо штриховки можно нарисовать «арки» для интервалов. Справа налево, начиная с +, проставить чередуя знаки + и −.
- Выбрать необходимые интервалы и записать ответ.
Расскажем подробнее про третий шаг алгоритма. Существует несколько подходов для определения знаков на промежутках.
Для примера возьмем трехчлен x2 + 4x - 5, его корнями являются числа -5 и 1, они разбивают числовую ось на три промежутка: (-∞, -5), (-5, 1) и (1, +∞).
Определим знак трехчлена x2 + 4x - 5 на промежутке (1, +∞). Для этого вычислим значение данного трехчлена при некотором значении x из этого промежутка. Можно брать любое значение переменной, главное — чтобы вычисления были простыми. В нашем случае, возьмем x = 2. Подставим его в трехчлен вместо переменной x:
- 22 + 4 * 2 - 5 = 4 + 8 - 5 = 7.
7 — положительное число. Это значит, что любое значение квадратного трехчлена на интервале (1, +∞) будет положительным. Так мы определили знак плюс.
Определим знаки на оставшихся двух промежутках. Начнем с интервала (-5, 1). Из этого интервала можем взять x = 0 и вычислить значение квадратного трехчлена при этом значении переменной:
- 02 + 4 * 0 - 5 = 0 + 0 - 5 = -5.
Так как -5 — отрицательное число, то на этом интервале все значения трехчлена будут отрицательными. Так мы определили знак минус.
Осталось определиться со знаком на промежутке (-∞, -5). Возьмем x = -6, подставляем:
- (-6)2 + 4 * (-6) - 5 = 36 - 24 - 5 = 7.
Следовательно, искомый знак — плюс.
Можно расставить знаки быстрее, если запомнить эти факты:
Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.
Пример 1. Решить неравенство методом интервалов: x^2 - 5x + 6 ≥ 0.
Как решаем:
-
Приравняем квадратный трехчлен к 0 и найдем нули:
x2 - 5x + 6 = 0
(x - 3) (x -2) = 0
x - 3 = 0
x - 2 = 0
x = 3
x = 2 -
Отметим полученные значения на числовой прямой:
-
Расставим знаки на полученных промежутках:
Ответ: х ≤ 2, х ≥ 3.
Пример 2. Применить метод интервалов для решения неравенства х2+4х+3 < 0.
Как решить неравенство методом интервалов, нам уже известно. Поэтому можем оформить решение кратко:
Ответ: -3 < x < -2.
Пример 3. Выполнить решение квадратного неравенства методом интервалов:
Как решаем:
- Находим корни квадратного трехчлена, который находится в левой части:
- Так как мы решаем строгое неравенство, то на координатной прямой изображаем выколотую точку с координатой 7:
- Теперь определим знаки на двух полученных промежутках (−∞, 7) и (7, +∞).
Это легко сделать, потому что дискриминант квадратного трехчлена равен нулю, а старший коэффициент со знаком минус. Фиксируем знаки: −, −:
- Так как мы решаем неравенство со знаком <, то изобразим штриховку над интервалами со знаками минус:
Очевидно, решениями являются оба промежутка (−∞, 7), (7, +∞).
Ответ: (−∞, 7), (7, +∞).