Область допустимых значений функции

В математике все должно быть точно и понятно. Чтобы научиться решать примеры еще быстрее, необходимо учитывать ОДЗ. Давайте разберемся, что это такое и чем оно может быть полезно. В статье найдете все необходимые определения и примеры решений.
  • Автор

    Анастасия Белова

  • Рубрика

    7 класс

  • Дата публикации

    28.12.2020

  • Просмотры

    11865

Допустимые и недопустимые значения переменных

В 7 классе заканчивается математика и начинается ее-величество-алгебра. Первым делом школьники изучают выражения с переменными.

Мы уже знаем, что математика состоит из выражений — буквенных и числовых. Каждому выражению, в котором есть переменная, соответствует область допустимых значений (ОДЗ). Если игнорировать ОДЗ, то в результате решения можно получить неверный ответ. Получается, чтобы быстро получить верный ответ, нужно всегда учитывать область допустимых значений. 

Чтобы дать верное определение области допустимых значений, разберемся, что  такое допустимые и недопустимые значения переменной. 

Рассмотрим все необходимые определения, связанные с допустимыми и недопустимыми значениями переменной.

Выражение с переменными — это буквенное выражение, в котором буквы обозначают величины, принимающие различные значения.

Значение числового выражения — это число, которое получается после выполнения всех действий в числовом выражении.

Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение.

Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Теперь, опираясь на данные определения, мы можем сформулировать, что такое допустимые и недопустимые значения переменной.

Допустимые значения переменных — это значения переменных, при которых выражение имеет смысл.

Если при переменных выражение не имеет смысла, то значения таких переменных называют недопустимыми

В выражении может быть больше одной переменной, поэтому допустимых и недопустимых значений может быть больше одного. 

Пример 1

Рассмотрим выражение Пример1

В выражении три переменные (a, b, c). 

Запишем значения переменных в виде: a = 1, b = 1, c = 2.

Такие значения переменных являются допустимыми, поскольку при подстановке этих значений в выражение, мы легко можем найти ответ: Пример решения

Таким же образом можем выяснить, какие значения переменных  — недопустимые. 

a = 1, b = 2, c = 1.

Подставим значения переменных в выражение Подставим значения переменных в выражение

На ноль делить нельзя. 

Что такое ОДЗ

ОДЗ — это невидимый инструмент при решении любого выражении с переменной. Чаще всего, ОДЗ не отображают графически, но всегда «держат в уме».


Область допустимых значений (ОДЗ) — это множество всех допустимых значений переменных для данного выражения.

Запоминаем!
ОДЗ относится к выражениям. Область определения функции относится к функциям и не относится к выражениям.

Пример 2

Рассмотрим выражение выражение

ОДЗ такого выражения выглядит следующим образом: ( - ∞; 3) ∪ (3; +∞).

Читать запись нужно вот так:
Область допустимых значений переменной x для выражения  Область допустимых значений переменной — это числовое множество ( - ∞; 3) ∪ (3; +∞).

Пример 3
Рассмотрим выражение Рассмотрим выражение

ОДЗ такого выражения будет выглядеть вот так: b ≠ c; a — любое число.

Такая запись означает, что область допустимых значений переменных b, c и a = это все значения переменных, при которых соблюдаются условия b ≠ c; a — любое число.


Как найти ОДЗ: примеры решения

Найти ОДЗ — это значит, что нужно указать все допустимые значения переменных для выражения. Часто, чтобы найти ОДЗ, нужно выполнить преобразование выражения.

Чтобы быстро и верно определять ОДЗ, запомните условия, при которых значение выражения не может быть найдено. 

Мы не можем вычислить значение выражения, если:

  • требуется извлечение квадратного корня из отрицательного числа
  • присутствует деление на ноль (математическое правило номер раз: никогда не делите на ноль)
  • отрицательный целый показатель в степени при отрицательном числе
  • требуется вычисление логарифма отрицательного числа
  • область определения тангенса область определения тангенса = π * k, где k ∈ z
  • область определения котангенса π * k, где k ∈ z
  • нахождение арксинуса и арккосинуса числа, выходящего за пределы числового промежутка [- 1, 1].

Теперь, приступая к поиску ОДЗ, вы можете сверять выражение по всем этим пунктам. 

Давайте потренируемся находить ОДЗ.

Пример 4

Найдем область допустимых значений переменной выражения a3 + 4 * a * b − 6.

Как решаем:

В куб возводится любое число. Ограничений при вычитании и сложении нет. Это значит, что мы можем вычислить значение выражения a3 + 4 * a * b − 6 при любых значениях переменной. 

ОДЗ переменных  a и b — это множество таких пар допустимых значений (a, b), где a — любое число и  b — любое число. 

Ответ: (a и b), где a — любое число и b — любое число.

Пример 5

Найдем область допустимых значений (ОДЗ) переменной выражения  Найдем область допустимых значений

Здесь нужно обратить внимание на наличие нуля в знаменатели дроби. Одним из условий, при котором вычисление значения выражения невозможно явлется наличие деления на ноль. 

Это значит, что мы может сказать, что ОДЗ переменной a в выражении пустое множество — пустое множество.

Пустое множество изображается в виде вот такого символа Ø.

Пример 6

Найдем область допустимых значений (ОДЗ) переменных в выражении пример 6

Если  есть квадратный корень, то нам нужно следить за тем, чтобы под знаком корня не было отрицательного числа. Это значит, что при подстановке значений a и b должны быть условия, при которых a + 3 * b + 5 ≥ 0.

Ответ: ОДЗ переменных a и b — это множество всех пар, при которых a + 3 * b + 5 ≥ 0.

Лайфхак
Чтобы не потратить зря время на решение нерешаемого примера, всегда обращайтесь к списку условий, при которых выражение не может быть решено.

Пример 7

Найдем ОДЗ переменной a в выражении пример 7

Прежде всего, нам нужно подобрать такое условие, при котором в знаменателе дроби не  будет ноля — в знаменателе дроби не  будет ноля

Мы знаем, что выражение под знаком корня должно быть положительным. Это дает нам второе условие: a + 1 ≥ 0.

Мы не можем вычислить логарифм отрицательного выражения. Получаем третье условие: a2 + 2 > 0.

Выражении в основании логарифма не должно быть отрицательным и не должно равняться единице. Получаем условие 4: a + 6 > 0.

Условие 5: a + 6 ≠ 1.

Определим ОДЗ, опираясь на все означенные условия:
a +1 - 1 0.


Определим ОДЗ, опираясь на все означенные условия

Ответ: ОДЗ: [ - 1; 0) ∪ (0; +∞)

Как видите, записывая ОДЗ, мы ставим квадратные и круглые скобки.

Запомните

  • Если число входит в ОДЗ, то около числа ставим квадратные скобки.
  • Если число не входит в ОДЗ, то около него ставятся круглые скобки. 

Например, если х > 6, но х < 8, то  записываем интервал [6; 8).

Зачем учитывать ОДЗ при преобразовании выражения

Иногда выражение просто невозможно решить, если не выполнить ряд тождественных преобразований. К ним относятся: перестановки, раскрытие скобок, группировка, вынесение общего множителя за скобки, приведение подобных слагаемых.

Кроме того, что видов таких преобразований довольно много: нужно понимать, в каких случаях какое преобразование возможно. В этом может помочь определение ОДЗ.

Тождественное преобразование может:

  • расширить ОДЗ
  • никак не повлиять на ОДЗ
  • сузить ОДЗ

Рассмотрим каждый случай в отдельности.

Пример 8

Рассмотрим выражение a + 4/a - 4/a

Поскольку мы должны следить за тем, чтобы в выражении не возникало деление ноль, определяем условие a ≠ 0.

Это условие отвечает множеству (−∞ ; 0) ∪ (0 ; +∞).

В выражении есть подобные слагаемые, если привести подобные слагаемые, то мы получаем выражение вида a. 

ОДЗ для a — это R — множество всех вещественных чисел. 

Преобразование расширило ОДЗ — добавился ноль. 

Пример 9

Рассмотрим выражение a2 + a + 4 * a

ОДЗ a для этого выражения — множество R.

В выражении есть подобные слагаемые, выполним тождественное преобразование. 

После приведения подобных слагаемых выражение приняло вид  a2 + 5 * a 

ОДЗ переменной a для этого выражения — множество R.

Это значит, что тождественное преобразование никак не повлияло на ОДЗ. 

Пример 10

Рассмотрим выражение пример 10

ОДЗ a определяется неравенством (a - 1) * (a - 4) ≥ 0.

Решить такое неравенство можно методом интервалов, что дает нам ОДЗ (−∞; 1] ∪ [4 ; +∞).

Затем выполним преобразование исходного выражения по свойству корней: корень произведения = произведению корней.

Приведем выражение к виду приведем выражение к виду

ОДЗ переменной a для этого выражения определяется неравенствами:
a - 1 ≥ 0
a - 4 ≥ 0

Решив систему линейных неравенств, получаем множество [4; + ∞).

Отсюда видно, что тождественные преобразования сузили ОДЗ.
От (−∞; 1] ∪ [4 ; +∞) до [4; + ∞).

Решив преобразовать выражение, внимательно следите за тем, чтобы не допустить сужение ОДЗ.

Запомните, что выполняя преобразование, следует выбирать такие, которые не изменят ОДЗ.

Тебе следует повторить тему - формулы сокращенного умножения!

 
 
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0