Проверьте знания по математике бесплатно
Узнать бесплатно

Квадратичная функция. Построение параболы

Квадратичная функция. Построение параболы
722.2K

Большинство явлений в нашей жизни можно описать математическим языком. И функция — отличный в этом помощник. Давайте рассмотрим ее квадратичную форму.

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило, в соответствии с которым каждому значению аргумента соответствует единственное значение функции. Вот какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек координатной плоскости, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0.

График квадратичной функции — парабола, которая имеет следующий вид для y = x2 в частном случае при b = 0, c = 0:

График квадратичной функции

Точки, обозначенные фиолетовыми кружками, называют базовыми точками. Чтобы найти их координаты для функции y = x2, нужно составить таблицу:

x

−2

−1

0

1

2

y

4

1

0

1

4

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x2 при любых значениях остальных коэффициентов. При увеличении старшего коэффициента график сужается, при уменьшении — расширяется.

График функции y = –x2 выглядит, как перевернутая парабола:

График функции y = –x2

Зафиксируем координаты базовых точек в таблице:

x

−2

−1

0

1

2

y

−4

−1

0

−1

−4

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля (a > 0), то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля (a < 0), то ветви параболы напрaвлены вниз.

Как строить график квадратичной функции — учитывать значения х, в которых функция равна нулю. Иначе это можно назвать нулями функции. На графике нули функции f(x) — это точки пересечения у = f(x) с осью ОХ.

Так как ордината (у) любой точки на оси ОХ равна нулю, поэтому для поиска координат точек пересечения графика функции у = f(x) с осью ОХ, нужно решить уравнение f(x) = 0.

Для наглядности возьмем функцию y = ax2 + bx + c. Чтобы найти точки пересечения с осью Ox, нужно решить квадратное уравнение ax2 + bx + c = 0. В процессе найдем дискриминант D = b2 - 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1.  Если D < 0, то уравнение не имеет решений и парабола не имеет точек пересечения с осью ОХ. Если a > 0,то график выглядит так:
    график при условии D < 0
  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:график при условии D = 0
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

условие нахождения точек пересечения оси ОХ

Если a > 0, то график выглядит как-то так:

график при условии a > 0
 

Теперь понятно, что, зная направление ветвей параболы и знак дискриминанта, мы можем схематично представить график конкретной функции.

график со всеми разобранными условиями

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

формула нахождения координат вершины параболы

график к формуле нахождения координат вершины параболы

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

основные параметры графика квадратичной функции
 

Получи больше пользы от Skysmart:

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax2 + bx + c.

Разберем общий алгоритм на примере y = 2x2 + 3x - 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x2 + 3x - 5.

D = b2 - 4ac = 9 - 4 * 2 * (-5) = 49 > 0

√D = 7

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x2 + 3x - 5 = 0

,

  1. Координаты вершины параболы:способ нахождения координат вершины параболы
  1. Точка пересечения с осью OY находится: (0; -5) относительно оси симметрии.
  2. Нанесем эти точки на координатную плоскость и построим график параболы:

    Пример графика параболы

Уравнение квадратичной функции имеет вид y = a * (x - x₀)2 + y₀

Зная координаты вершины параболы и старший коэффициент, можно записать уравнение квадратичной функции в виде у = a(x − x0) + y0, где x0, y0 — координаты вершины параболы.

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x2 + 3x - 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x - 1)2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить график функции y = x2,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая.

    график параболы для каждого случая уравнения

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

  1. Данный вид функции позволяет быстро найти нули функции:

    (x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

  2. Определим координаты вершины параболы:

    нахождение координат вершины параболы уравнения y = (x + a) * (x + b)

  3. Найти точку пересечения с осью OY:

    с = ab = (−2) × (1) = −2 и ей симметричная относительно оси симметрии параболы.

  4. Отметим эти точки на координатной плоскости и соединим плавной прямой линией.

    график параболы уравнения y = (x + a) * (x + b)

 

Комментарии

Бесплатные шпаргалки
Бесплатные шпаргалки
Бесплатные шпаргалки
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2