Законы математики

В каждой семье свои законы: сладкое — после супа, игры — после приборки. Но если с родителями можно договориться об исключениях, то правила точных наук оспорить никак нельзя. В этой статье узнаем, какие законы есть в математике.
  • Автор

    Лидия Казанцева

  • Дата публикации

    30.12.2020

  • Просмотры

    265

Переместительный закон сложения

Начнем изучать основные законы математики со сложения натуральных чисел.

Переместительный закон сложения

От перестановки мест слагаемых сумма не меняется. С помощью переменных его можно записать так:

m + n = n + m

Переместительный закон сложения работает для любых чисел.

Если прибавить шестерку к двойке — получим восьмерку. И наоборот, прибавим двойку к шестерке — снова получим восьмерку. Это доказывает справедливость переместительного закона сложения.

  • 6 + 2 = 8
  • 2 + 6 = 8

Приведем пример с весами, которые используют продавцы в магазинах.

Если мы положим на одну чашу весов 3 килограмма конфет, а на другую — такие же 3 килограмма конфет, то стрелка весов будет на нейтральной позиции. Это говорит нам о том, что чаши действительно весят одинаково.

При этом неважно, как будут лежать конфеты, в каком порядке. Если перемешать конфеты в пакете, как шары в лотерейном мешке — их вес не изменится и будет по-прежнему 3 килограмма. От перестановки мест конфет их сумма, то есть вес, не меняется.

Поэтому, между выражениями 8 + 2 и 2 + 8 можно поставить знак равенства. Это значит, что их сумма равна:

  • 8 + 2 = 2 + 8
  • 10 = 10

Формула переместительного закона для обыкновенных дробей:


Формула переместительного закона для обыкновенных дробей

Чтобы сложить две дроби нужно сложить числители, а знаменатель оставить прежним. Вот так:


Чтобы сложить две дроби нужно сложить числители

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в онлайн-школу Skysmart.

Наши преподаватели понятно объяснят что угодно — от базовых законов математики до олимпиадных задач — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Сочетательный закон сложения

Сочетательный закон сложения помогает группировать слагаемые для удобства их вычислений.

Сочетательный закон сложения: два способа


  1. Результат сложения нескольких слагаемых не зависит от порядка действий.

  2. Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего чисел.

Чтобы лучше запомнить суть этого закона, просто выбирайте формулировку, которая вам больше нравится.

Рассмотрим сумму из трех слагаемых:

  • 1 + 3 + 4

Чтобы вычислить это выражение, можно сначала сложить числа 1 и 3 и к полученному результату прибавить 4. Чтобы было удобнее, можно сумму 1 и 3 взять в скобки — так мы поймем, что ими нужно заняться в первую очередь:

  • 1 + 3 + 4 = (1 + 3) + 4 = 5 + 4 = 8

Или по-другому: сложим числа 3 и 4 и к результату прибавим 1:

  • 1 + 3 + 4 = 1 + (3 + 4) = 1 + 7 = 8

В обоих случаях получается один и тот же результат — что и требовалось доказать.

Между выражениями (1 + 3) + 4 и 1 + (3 + 4) можно поставить знак равенства, так как они равны одному и тому же значению:

  • (1 + 3) + 4 = 1 + (3 + 4)
  • 8 = 8

Отразим сочетательный закон сложения с помощью переменных:

(a + b) + c = a + (b + c)

Формула сочетательного закона для обыкновенных дробей:


Формула сочетательного закона для обыкновенных дробей

Например, если к сумме одной седьмой и трёх седьмых прибавить четыре седьмых, то в результате получим восемь седьмых.


пример решения

Переставим скобки — к одной седьмой прибавим сумму трёх седьмых и четырех седьмых. И снова ответ будет восемь седьмых.


Переставим скобки

Значит, сочетательный закон справедлив и для обыкновенных дробей.


сочетательный закон справедлив и для обыкновенных дробей

Переместительный закон умножения

С каждым новым правилом решать задачки по математике все интереснее.

Переместительный закон умножения

От перемены мест множителей произведение не меняется. То есть, если множимое и множитель поменять местами — их произведение никак не изменится.

Проверим, действительно ли это так. Умножим пятерку на двойку, а потом наоборот:

  • 5 * 2 = 10
  • 2 * 5 = 10

В обоих случаях получили один ответ — значит между выражениями 5 * 2 и 2 * 5 можно поставить знак равенства.

  • 5 * 2 = 2 * 5
  • 10 = 10

Переместительный закон умножения с помощью переменных выглядит так:

a * b = b * a

Сочетательный закон умножения

Рассмотрим еще один полезный закон в математике.

Сочетательный закон умножения

Если выражение состоит из нескольких сомножителей, то их произведение не зависит от порядка действий.

Другими словами, умножайте числа в любом порядке — как вам больше нравится.

Рассмотрим пример:

  • 2 * 3 * 4

Это выражение можно вычислить в любом порядке. Давайте сначала перемножим числа 2 и 3, а полученный результат умножим на 4:

  • 2 * 3 = 6
  • 6 * 4 = 24
  • 2 * 3 * 4 = 24

А теперь по-другому: перемножим числа 3 и 4, а результат умножим на 2:

  • 3 * 4 = 12
  • 2 * 12 = 24
  • 2 * 3 * 4 = 24

Тот же ответ! Значит между выражениями (2 * 3) * 4 и 2 * (3 * 4) можно поставить знак равенства, так как они равны одному значению.

  • (2 * 3) * 4 = 2 * (3 * 4)
  • 6 * 4 = 2 * 12
  • 24 = 24

Для любых натуральных чисел a, b и c верно равенство:

a * b * с = (a * b) * с = a * (b * с)

Пример

Вычислить: 5 * 6 * 7 * 8.

Как решаем:

Это выражение можно вычислять в любом порядке. Вычислим слева направо:

5 * 6 = 30

30 * 7 = 210

210 * 8 = 1680

5 * 6 * 7 * 8 = 1680

Ответ: 1680

Распределительный закон умножения

Для умножения есть еще один закон — распределительный. На математике в 6 классе он звучит так:

Распределительный закон умножения

  • Чтобы число умножить на сумму чисел, нужно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
  • Чтобы сумму чисел умножить на число, нужно каждое слагаемое отдельно умножить на число и полученные произведения сложить.

То есть при помощи распределительного закона умножения можно умножить сумму на число и число на сумму. Проверим на примере:

  • (3 + 5) * 2

Сначала выполним действие в скобках:

  • (3 + 5) = 8

В главном выражении (3 + 5) * 2 заменим выражение в скобках на восьмерку:

  • 8 * 2 = 16

Получили ответ 16. Этот же пример можно решить с помощью распределительного закона умножения. Для этого каждое слагаемое в скобках, нужно умножить на 2, а потом сложить полученные результаты:

  • (3 + 5) * 2 = 3 * 2 + 5 * 2
  • 3 * 2 = 6
  • 5 * 2 = 10
  • 6 + 10 = 16

Отразим распределительный закон умножения с помощью переменных:

(a + b) * c = a * c + b * c

Выражение в скобках (a + b) — это множимое. Тогда переменная с — множитель, так как они соединены знаком умножения.


соединены знаком умножения

Из переместительного закона умножения мы знаем, что от перемены мест множимого и множителя произведение не изменится.

Если множимое (a + b) и множитель c поменять местами, то получим выражение c * (a + b). Тогда получится, что мы умножаем переменную c на сумму (a + b). Для такого умножения можно применять распределительный закон умножения. Переменную c можно умножить на каждое слагаемое в скобках:

c * (a + b) = c * a + c * b

 

Пример 1

Решить: 5 * (3 + 2).

Как решаем:

Умножим пятерку на каждое слагаемое в скобках и сложим полученные результаты:

5 * (3 + 2) = 5 * 3 + 5 * 2 = 15 + 10 = 25

Ответ: 25

 

Пример 2

Найти значение выражения 2 * (5 + 2).

Как решаем:

Умножим двойку на каждое слагаемое в скобках и сложим полученные результаты:

2 * (5 + 2) = 2 * 5 + 2 * 2 = 10 + 4 = 14

Ответ: 4.

Если в скобках не сумма, а разность, то сначала нужно умножить множимое на каждое число, которое в скобках. А после из полученного первого числа вычесть второе число.

 

Пример 3

Решить: 4 * (6 − 2).

Как решаем:

Умножим четверку на каждое число в скобках. Из полученного первого числа вычтем второе число:

4 * (6 − 2) = 4 * 6 − 4 * 2 = 24 − 8 = 16

Ответ: 16

Распределительный закон умножения для суммы обыкновенных дробей:


Распределительный закон умножения

Распределительный закон умножения для разности обыкновенных дробей:


Распределительный закон умножения для разности обыкновенных дробей

Проверим справедливость этого закона:


Проверим справедливость этого закона

Посчитаем, чему равна левая часть равенства.


Посчитаем, чему равна левая часть равенства

Теперь посчитаем, чему равна правая часть равенства.


посчитаем правую часть равенства

Так мы доказали справедливость распределительного закона.

Задания для самопроверки

Давайте потренируемся! Решите примеры и сравните с ответами — только чур, не подглядывать :)

Задание 1. Найти значение выражения: 8 * (1 + 6).

Задание 2. Применить распределительный закон умножения: 2 * (9 + 5).

Задание 3. Решить в порядке выполнения действий: 3 * (6 + 4) + 7 * (8 + 2).

Задание 4. Решить выражение: 4 * (5 + 4) + 9 * (3 + 2).

Задание 5. Применить распределительный закон умножения: 13 * (3 + 8) + 5 * (4 + 2)

Задание 6. Какое из действий (умножение, деление, сложение или вычитание) нужно выполнить последним ((20 − 1) * 12 + 30) : 3?

Задание 7. В смартфоне 32 гб памяти. Какое количество приложений можно установить, если одно занимает 1,2 гб?

Задание 8. Верно ли равенство: 8 * 5 = 49?

 

Ответы


  1. 56;

  2. 28;

  3. 100;

  4. 81;

  5. 173;

  6. Деление;

  7. 26;

  8. Неверно.

Еще больше практики — в современной школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с учителем.

Приходите на бесплатный вводный урок математики и начните заниматься эффективно и в удовольствие уже завтра!

Бесплатный вводный урок
Шаг 1 из 2. Данные ученика
Класс
Цель обучения
Поделиться: