Умножение и деление степеней

Сегодня на повестке дня — перемножение степеней, а также информация о том, как делить степени. Вспомним свойства степеней и разберем их на понятных и простых примерах.
  • Автор

    Юлия Герасимова

  • Дата публикации

    03.08.2020

  • Просмотры

    2917

Что такое степень числа

Алгебра дает нам такое определение: 

«Степенью n числа а является произведение множителей величиной а n-раз подряд»

  • an — степень, где

a — основание степени

n — показатель степени

Соответственно, an= a·a·a·a...·a

Читается такое выражение, как a в степени n

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) на само себя.

А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число — она решается довольно просто:

  • 23 = 2·2·2, где

2 — основание степени

3 — показатель степени

Действия, конечно, можно выполнять и на калькуляторе — вот несколько подходящих:

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3). Неважно в какой класс перешел ребенок — таблица пригодится всегда.

Число

Вторая степень

Третья степень

1

1

1

2

4

8

3

9

27

4

16

64

5

25

125

6

36

216

7

49

343

8

64

512

9

81

729

10

100

1000

Свойства степеней: когда складывать, а когда вычитать

Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук и ниже мы их рассмотрим.

Свойство 1: произведение степеней

При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:

an · am = am+n

a — основание степени

m, n — показатели степени, любые натуральные числа.

Свойство 2: частное степеней

Когда мы делим степени с одинаковыми основаниями, основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.

 

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

Свойство 3: возведение степени в квадрат

Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.

(an)m = an· m 

a — основание степени (не равное нулю)

m, n — показатели степени, натуральное число

Свойство 4: степень возведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b)n = an · bn

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

Свойство 5: степень частного

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b)n = an : bn

a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0, 

n — показатель степени, натуральное число

Умножение чисел с одинаковыми степенями

Для того, чтобы произвести умножение степеней с одинаковыми показателями, нужно перемножить основания, а показатель степени оставить неизменным:

an · bn = (a · b)n , где

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

  • a5 · b5 = (a·a·a·a·a) ·(b·b·b·b·b) = (ab)·(ab)·(ab)·(ab)·(ab) = (ab)5
  • 35 · 45 = (3·4)5 = 125 = 248 832
  • 16a2 = 42·a2 = (4a)2

Умножение степеней с одинаковыми основаниями

Степени с одинаковыми основаниями умножаются путём сложения показателей степеней:

am · an= am+n, где

a — основание степени

m, n — показатели степени, любые натуральные числа

  • 35 · 32 = 35+3 = 38 = 6561
  • 28 · 81= 28 · 23 = 211 = 2048 

Умножение чисел с разными степенями

Если степени разные, но основания одинаковые, то действия производим согласно правилу, описанному выше. А именно:

an · bn = (a · b)n

Если же разные и степени, и основания и одно из оснований не преобразуется в число с той же степенью, как у другого числа (как здесь: 28 · 81= 28 · 23 = 211 = 2048), то производим возведение в степень каждого числа и лишь затем умножаем:

  • 33 · 52 = 27·25 = 675

Деление степеней с одинаковыми основаниями

Деление степеней с разными основаниями, но одинаковыми показателями осуществляется по следующей формуле: показатели отнимаются, а основание остается неизменным.

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

Деление чисел с одинаковыми степенями

При делении степеней с одинаковыми показателями результат частного этих чисел возводится в степень:

an : bn = (a : b)n , где 

a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0, 

n — показатель степени, натуральное число

Деление чисел со степенями

Если степени разные, но основания одинаковые, то действия производим согласно правилу, описанному выше. А именно:



Если же разные и степени, и основания, то возводим в степень каждое число и только потом умножаем:

  • 33 ÷52 = 27÷25 = 1,08

Подготовиться к сложной контрольной ребенку помогут в детской онлайн-школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. Запишите вашего ребенка на бесплатный вводный урок математики и начните заниматься ей с удовольствием уже завтра.

 
Бесплатный вводный урок
Шаг 1 из 2. Данные ученика
Класс
Цель обучения