При умножении степеней с одинаковым основанием показатели степени складываются, а основание остаётся без изменений. Пример:
- Например,
Что такое степень числа
Алгебра дает нам такое определение:
«Степенью n числа а является произведение множителей величиной а n-раз подряд»
- an — степень, где
a — основание степени
n — показатель степени
Соответственно:
Читается такое выражение, как a в степени n
Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) на само себя.
А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число — она решается довольно просто:
- 23 = 2·2·2, где
2 — основание степени
3 — показатель степени
Таблица степеней
Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3). Не важно, в какой класс перешел ребенок — таблица пригодится всегда.
Число |
Вторая степень |
Третья степень |
1 |
1 |
1 |
2 |
4 |
8 |
3 |
9 |
27 |
4 |
16 |
64 |
5 |
25 |
125 |
6 |
36 |
216 |
7 |
49 |
343 |
8 |
64 |
512 |
9 |
81 |
729 |
10 |
100 |
1000 |
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Получи больше пользы от Skysmart:
-
Прокачивай знания на курсах математики.
-
Выбирай из 1200+ репетиторов по математике.
Записывайся на бесплатные курсы для детей.
Свойства степеней: когда складывать, а когда вычитать
Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Рассмотрим основные из них.
Свойство 1: произведение степеней
При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:
am · an = am+n
a — основание степени
m, n — показатели степени, любые натуральные числа.
Раз
35 · 32 = 35+3 = 38 = 6 561
Два
28 · 81= 28 · 23 = 211 = 2048
Свойство 2: частное степеней
Когда мы делим степени с одинаковыми основаниями, основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.
a — любое число, не равное нулю
m, n — любые натуральные числа такие, что m > n
Раз
Два: записать частное в виде степени
Свойство 3: возведение степени в степень
Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.
(an)m = an· m
a — основание степени (не равное нулю)
m, n — показатели степени, натуральное число
Свойство 4: возведение произведения в степень
При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
(a · b)n = an · bn
a, b — основания, не равные нулю
n — показатель степени, натуральное число
Свойство 5: возведение частного в степень
Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
(a : b)n = an : bn
a, b — основания степени, не равные нулю
n — показатель степени, натуральное число
Умножение степеней с одинаковым показателем
Для того, чтобы произвести умножение степеней с одинаковыми показателями, нужно перемножить основания, а показатель степени оставить неизменным:
an · bn = (a · b)n , где
a, b — основания степени (не равные нулю)
n — показатель степени, натуральное число
- a5 · b5 = (a·a·a·a·a) ·(b·b·b·b·b) = (ab)·(ab)·(ab)·(ab)·(ab) = (ab)5
- 35 · 45 = (3·4)5 = 125 = 248 832
- 16a2 = 42·a2 = (4a)2
Деление чисел с одинаковыми степенями
При делении степеней с одинаковыми показателями результат частного этих чисел возводится в степень:
an : bn = (a : b)n , где
a, b — основания степени (не равные нулю), любые рациональные числа, b ≠ 0,
n — показатель степени, натуральное число