b733e4
Проверьте знания по математике бесплатно
Узнать бесплатно

Теорема Виета для квадратного уравнения

Теорема Виета для квадратного уравнения
876.8K

Многие ученые прошлых веков открыли то, что остается актуальным до сих пор. Один из них — французский математик Франсуа Виет. В этой статье расскажем о его теореме и зачем она нужна.

Теорема Виета - это утверждения о соотношении между коэффициентами квадратного уравнения и его корнями. Формулы теоремы Виета:

  • Сумма корней:
  • Произведение корней:

Примеры:

  • Для уравнения , сумма корней: , произведение: .
  • Для уравнения , сумма корней: , произведение: .

Основные понятия

Квадратное уравнение — это ax2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b2 − 4ac. Его свойства:

  • если D < 0, корней нет;
  • если D = 0, есть один корень;
  • если D > 0, есть два различных корня.

В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Modal window id: popup-professionsbox

Формула Виета



Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так: 

Теорема Виета

Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:
справедливые равенства для теоремы Виета

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:
формула: сумма корней минус 4

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
к сумме корней добавляем произведение корней

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
поиск корней уравнения x<sup>2</sup> + 4x + 3 = 0

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
сумма корней уравнения x<sup>2</sup> + 4x + 3 = 0

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
произведение корней уравнения x<sup>2</sup> + 4x + 3 = 0

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:
сумма и произведение корней найдены верно


Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.

Получи больше пользы от Skysmart:

Доказательство теоремы Виета

Дано квадратное уравнение x2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:
Доказательство теоремы Виета

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Формулы корней
Формулы корней

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.
формула поиска корней x₁ и x₂

  1. Объединим числитель и знаменатель в правой части.

     

    доказательство теоремы Виета, шаг 1

  2. Раскроем скобки и приведем подобные члены:

     

    доказательство теоремы Виета, шаг 2

  3. Сократим дробь полученную дробь на 2, остается −b:

     

    доказательство теоремы Виета, шаг 3

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

  1. Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

     

    доказательство теоремы Виета, шаг 4

  2. Перемножаем числители и знаменатели между собой:

     

    доказательство теоремы Виета, шаг 5

  3. Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a2 − b2. Получаем:

     

    доказательство теоремы Виета, шаг 6

  4. Далее произведем трансформации в числителе:

     

    доказательство теоремы Виета, шаг 7

  5. Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

     

    доказательство теоремы Виета, шаг 8

  6. Далее раскроем скобки и приведем подобные члены:

     

    доказательство теоремы Виета, шаг 9

  7. Сократим:

     

    доказательство теоремы Виета, шаг 10

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Обратная теорема Виета

Обратная теорема Виета - это утверждение, согласно которому, если два числа таковы, что их сумма равна второму коэффициенту сводного квадратного уравнения, взятому с противоположным знаком, а их произведение равно его свободному члену, то данные числа являются корнями данного квадратного уравнения.

Пример:

  • Для уравнения , числа 2 и 3 являются корнями, так как их сумма равна 5 (с противоположным знаком -5), а произведение равно 6.

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

 

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.
Обратная теорема Виета

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x2 + bx + c = 0.

  1. Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

    доказательство обратной теоремы Виета, шаг 1

  2. Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

    доказательство обратной теоремы Виета, шаг 2

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.
    доказательство обратной теоремы Виета, шаг 3
    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x2 + bx + c = 0.

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
запись суммы и произведения корней уравнения x<sup>2</sup> − 6x + 8 = 0

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:
проверка значений 4 и 2 для обоих равенств

Значит числа 4 и 2 являются корнями уравнения x2 − 6x + 8 = 0.
ответ на уравнение x<sup>2</sup> − 6x + 8 = 0

Неприведенное квадратное уравнение 

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x2.
Неприведенное квадратное уравнение

  1. Получилось следующее приведенное уравнение:

приведенное квадратное уравнение

  1. Получается, второй коэффициент при x равен b на a, свободный член — c на a. Значит сумма и произведение корней будут иметь вид:

    сумма и произведение корней приведенного уравнения

  2. Рассмотрим пример неприведенного уравнения: 4x2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x2, то есть на 4.

    неприведенное уравнение: 4x2 + 5x + 1 = 0

  3. Получилось приведённое квадратное уравнение. Второй коэффициент которого равен 5 на 4, а свободный член одна четвертая.
  4. Тогда в соответствии с теоремой Виета получаем:

    сумма и произведение корней уравнения 4x2 + 5x + 1 = 0

  5. Метод подбора помогает найти корни: −1 и  минус одна четвертая

ответ на уравнение 4x2 + 5x + 1 = 0
 



 

Комментарии

Открыть диалоговое окно с формой по клику
Бесплатный вебинар
Бесплатный вебинар
Бесплатный вебинар
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2