Параллелограмм: свойства и признаки

Геометрические фигуры изучают не только восьмиклассники и технари, но и представители творческих специальностей. Нестандартные четырехугольные формы можно встретить как в дизайне обуви, так и в современных зданиях. В этой статье расскажем о параллелограмме и его отличительных особенностях.
  • Автор

    Лидия Казанцева

  • Дата публикации

    19.11.2020

  • Просмотры

    807

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

 
  1. В параллелограмме точка пересечения диагоналей делит их пополам.

  2. Любая диагональ параллелограмма делит его на два равных треугольника.

  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

 
  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.

  2. Биссектрисы смежных углов параллелограмма пересекаются под прямым углом.

  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

 
  1. S = a * h, где a — сторона, h — высота.
    параллелограмм

  2. S = a * b * sinα, где a и b — две стороны, sinα — синус угла между ними.
    параллелограмм

  3. S = 0,5 * (d1 * d2), где d1,d2 — две диагонали.
    параллелограмм

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 * (a + b), где a — ширина, b — высота.


параллелограмм

 


Приходите решать увлекательные задачки с красочными героями и в интерактивном формате. Запишите вашего ребенка на бесплатный пробный урок математики в онлайн-школу Skysmart: познакомимся, покажем, как все устроено на платформе и наметим вдохновляющую программу обучения.

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

 
  1. Противоположные стороны параллелограмма ABCD равны: AB = DC, BC = AD.
    параллелограмм

  2. Противоположные углы параллелограмма ABCD равны:∠A = ∠C, ∠B = ∠D.
    параллелограмм

  3. Диагонали параллелограмма ABCD равны и точкой пересечения делятся пополам: BO = OD, AO = OC.
    параллелограмм

  4. Диагональ делит параллелограмм ABCD на два равных треугольника: △ABC = △CDA.
    параллелограмм

  5. Сумма углов в параллелограмме ABCD, прилежащих к одной стороне, равна 180 градусам: ∠A + ∠D = 180°.
    параллелограмм

  6. В параллелограмме ABCD накрест лежащие углы при диагонали равны: ∠BAC = ∠ACD, ∠BCA = ∠CAD.
    параллелограмм

  7. В параллелограмме ABCD сумма всех углов равна 360° градусам.
    параллелограмм

  8. Точка пересечения диагоналей является центром симметрии параллелограмма ABCD.
    параллелограмм

  9. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d12 + d22 = 2 * (a2 + b2 ).
    параллелограмм

  10. Биссектриса отсекает от параллелограмма ABCD равнобедренный треугольник.
    параллелограмм

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.


параллелограмм

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

 
  1. Как противоположные стороны параллелограмма: AB = CD

  2. Как внутренние накрест лежащие равны пары углов: ∠1 = ∠2, ∠3 = ∠4.

  3. Следовательно, треугольник AOB равен треугольнику COD, из чего следует:
    • CO = OA
    • BO = DO
    параллелограмм

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD
параллелограмм

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

 
  1. AC — общая сторона;

  2. По условию AB = CD;

  3. ∠1 = ∠2, как внутренние накрест лежащие углы для параллельных прямых.
параллелограмм

Шаг 3. Из равенства треугольников также следует:

  • ∠3 = ∠4

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD
параллелограмм

Шаг 2. Рассмотрим треугольники ABC и ADC:

  • AC — общая сторона;
  • B = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и ADC равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

  • ∠ DCA = ∠BAC

    А так как эти углы накрест лежащие при верхней и нижней сторонах и секущей диагонали, значит верхняя и нижняя стороны параллельны.

  • ∠DAC = ∠BCA

    Эти углы накрест лежащие при боковых сторонах и секущей диагонали. Поэтому боковые стороны четырёхугольника тоже параллельны. Значит четырёхугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные.
параллелограмм

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащиз углов ∠1 = ∠2.

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все таки связано с параллельностью противоположных сторон.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в детскую школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Бесплатный вводный урок
Шаг 1 из 2. Данные ученика
Класс
Цель обучения
Поделиться: