Modal window id: popup-shopmath

Параллелограмм: свойства и признаки

Параллелограмм: свойства и признаки
773K

Геометрические фигуры изучают не только восьмиклассники и технари, но и представители творческих специальностей. Нестандартные четырехугольные формы можно встретить как в дизайне обуви, так и в современных зданиях. В этой статье расскажем о параллелограмме и его отличительных особенностях.

Правило параллелограмма — это метод для нахождения суммы двух векторов. Из произвольной точки откладываются оба вектора, затем строится параллелограмм с этими векторами как со сторонами. Диагональ параллелограмма, исходящая из начальной точки, будет суммой этих векторов. Пример: для векторов A и B, сумма будет диагональю параллелограмма, построенного на A и B.

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

 
  1. В параллелограмме точка пересечения диагоналей делит их пополам.

  2. Любая диагональ параллелограмма делит его на два равных треугольника.

  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

 
  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.

  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.

  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

 
  1. S = a × h, где a — сторона, h — высота.
    параллелограмм где a — сторона, h — высота

  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a2 × sinα.
    где a и b — две стороны, sinα — синус угла между ними

  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
    параллелограмм где d1,d2 — две диагонали

Периметр параллелограмма — сумма длин его непараллельных сторон, умноженная на два.

P = 2 × (a + b), где a и b — длины непараллельных сторон.


У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Modal window id: popup-professionsbox

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

 
  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
    1 свойство параллелограмма

  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
    2 свойство параллелограмма

  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
    3 свойство параллелограмма

  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
    4 свойство параллелограмма

  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
    5 свойство параллелограмма

  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d12 + d22 = 2 × (a2 + b2 ).
    9 свойство параллелограмма

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.


Теорема параллелограммов #1

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

 
  1. AB = CD как противоположные стороны параллелограмма.

  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.

  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO
    Подтверждение теорема #1

Теорема доказана. Наше предположение верно.

Получи больше пользы от Skysmart:

Признаки параллелограмма

Диагонали параллелограмма, если они равны, указывают на то, что этот параллелограмм является прямоугольником.

Например, в прямоугольнике диагонали пересекаются в точке и делят его на четыре равных треугольника.

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD
1 признак параллелограмма

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

 
  1. AC — общая сторона;

  2. По условию AB = CD;

  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.
Проверка первого признака параллелограмма

Шаг 3. Из равенства треугольников также следует:

  • ∠3 = ∠4

Доказательство первого признака параллелограмма

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD
2 признак параллелограмма

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

  • ∠ DCA = ∠BAC

    А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

  • ∠DAC = ∠BCA

    Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.
3 признак параллелограмма

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Доказательство третьего признака параллелограмма

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

 

Комментарии

Открыть диалоговое окно с формой по клику

Получите план обучения, который поможет понять и полюбить геометрию

На вводном уроке с методистом

  1. Проверим знание геометрии и других разделов математики, выявим пробелы
  2. Подберём курс
  3. Познакомим с интерактивной платформой

Оставляя заявку, вы принимаете условия соглашения