Параллелограмм: свойства и признаки

Геометрические фигуры изучают не только восьмиклассники и технари, но и представители творческих специальностей. Нестандартные четырехугольные формы можно встретить как в дизайне обуви, так и в современных зданиях. В этой статье расскажем о параллелограмме и его отличительных особенностях.
  • Автор

    Лидия Казанцева

  • Рубрика

    8 класс

  • Дата публикации

    19.11.2020

  • Просмотры

    48610

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

 
  1. В параллелограмме точка пересечения диагоналей делит их пополам.

  2. Любая диагональ параллелограмма делит его на два равных треугольника.

  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

 
  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.

  2. Биссектрисы смежных углов параллелограмма пересекаются под прямым углом.

  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

 
  1. S = a * h, где a — сторона, h — высота.
    параллелограмм где a — сторона, h — высота

  2. S = a * b * sinα, где a и b — две стороны, sinα — синус угла между ними.
    где a и b — две стороны, sinα — синус угла между ними

  3. S = 0,5 * (d1 * d2), где d1,d2 — две диагонали.
    параллелограмм где d1,d2 — две диагонали

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 * (a + b), где a — ширина, b — высота.


параллелограмм где a — ширина, b — высота

 


У нас есть отличные дополнительные занятия по математике! Для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

 
  1. Противоположные стороны параллелограмма ABCD равны: AB = DC, BC = AD.
    1 свойство параллелограмма

  2. Противоположные углы параллелограмма ABCD равны:∠A = ∠C, ∠B = ∠D.
    2 свойство параллелограмма

  3. Диагонали параллелограмма ABCD равны и точкой пересечения делятся пополам: BO = OD, AO = OC.
    3 свойство параллелограмма

  4. Диагональ делит параллелограмм ABCD на два равных треугольника: △ABC = △CDA.
    4 свойство параллелограмма

  5. Сумма углов в параллелограмме ABCD, прилежащих к одной стороне, равна 180 градусам: ∠A + ∠D = 180°.
    5 свойство параллелограмма

  6. В параллелограмме ABCD накрест лежащие углы при диагонали равны: ∠BAC = ∠ACD, ∠BCA = ∠CAD.
    6 свойство параллелограмма

  7. В параллелограмме ABCD сумма всех углов равна 360° градусам.
    7 свойство параллелограмма

  8. Точка пересечения диагоналей является центром симметрии параллелограмма ABCD.
    8 свойство параллелограмма

  9. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d12 + d22 = 2 * (a2 + b2 ).
    9 свойство параллелограмма

  10. Биссектриса отсекает от параллелограмма ABCD равнобедренный треугольник.
    10 свойство параллелограмма

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.


Теорема параллелограммов #1

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

 
  1. Как противоположные стороны параллелограмма: AB = CD

  2. Как внутренние накрест лежащие равны пары углов: ∠1 = ∠2, ∠3 = ∠4.

  3. Следовательно, треугольник AOB равен треугольнику COD, из чего следует:
    • CO = OA
    • BO = DO
    Подтверждение теорема #1

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD
1 признак параллелограмма

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

 
  1. AC — общая сторона;

  2. По условию AB = CD;

  3. ∠1 = ∠2, как внутренние накрест лежащие углы для параллельных прямых.
Проверка первого признака параллелограмма

Шаг 3. Из равенства треугольников также следует:

  • ∠3 = ∠4

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD
2 признак параллелограмма

Шаг 2. Рассмотрим треугольники ABC и ADC:

  • AC — общая сторона;
  • B = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и ADC равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

  • ∠ DCA = ∠BAC

    А так как эти углы накрест лежащие при верхней и нижней сторонах и секущей диагонали, значит верхняя и нижняя стороны параллельны.

  • ∠DAC = ∠BCA

    Эти углы накрест лежащие при боковых сторонах и секущей диагонали. Поэтому боковые стороны четырёхугольника тоже параллельны. Значит четырёхугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные.
3 признак параллелограмма

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащиз углов ∠1 = ∠2.

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все таки связано с параллельностью противоположных сторон.

 
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0

Консультация с экспертом по поступлению в университет