Проверьте знания по математике бесплатно
Узнать бесплатно
Ваш ребёнок технарь или гуманитарий?

Узнайте бесплатно за 10 минут

Раскрытие скобок

Раскрытие скобок
270.4K

На уроках по русскому языку мы используем скобки для пояснений. В математике у них другая функция — показать порядок выполнения действий. В обоих случаях скобки важны и приносят пользу, поэтому сейчас научимся их раскрывать и решать алгебраические выражения.

Понятие раскрытия скобок

В задачах по математике постоянно встречаются числовые и буквенные выражения, а также выражения с переменными, которые составлены с использованием скобок.

Основная функция скобок — менять порядок действий при вычислениях значений числовых выражений. 

Часто можно перейти от одного выражения со скобками к тождественно равному выражению без скобок. Например:

  • 2(3 + 4) = 2 * 3 + 2 * 4.

Такой переход от выражения со скобками к тождественно равному выражению без скобок несет в себе основную идею о раскрытии скобок.

Начальное выражение со скобками и результат, полученный после раскрытия скобок, удобно записывать в виде равенства, как мы это сделали в предыдущем примере.

В школе тему раскрытия скобок обычно подходят в 6 классе. На этом этапе раскрытие скобок воспринимают, как избавление от скобок, которые указывают порядок выполнения действий. И изучают раскрытие скобок на примерах выражений, которые содержат:

  • знаки плюс или минус перед скобками, которые заключают сумму или разность, например, (a + 7) и -(-3 + 2a - 12 - b);
  • произведение числа, одной или нескольких букв и суммы или разности в скобках, например, 3(2 - 7), (3 - a + 8c)(-b) или -2a(b + 2c - 3m).

Раскрытие скобок также можно рассматривать шире.

Раскрытием скобок можно назвать переход от выражения, которое содержит отрицательные числа в скобках, к выражению без скобок. Например:

  • 5 + (-3) - (-7) = 5 - 3 + 7.

Или, если в описанных выше выражениях вместо чисел и переменных могут быть любые выражения. В полученных таким способом выражениях тоже можно проводить раскрытие скобок. Например:


раскрытие скобок

Раскрытие скобок — это избавление от скобок, которые указывают порядок выполнения действий, а также избавление от скобок, в которые заключены отдельные числа и выражения.

Важно отметить еще один момент, который касается особенностей записи решения при раскрытии скобок. При раскрытии скобок в громоздких выражениях можно прописывать промежуточные результаты в виде цепочки равенств. Например, вот так:

  • 5 - (3 - (2 - 1)) = 5 - (3 - 2 + 1) = 5 - 3 + 2 - 1

Первое правило раскрытия скобок

Рассмотрим выражение:

  • 8 + (−9 + 3)

Это выражение равно двум. А теперь раскроем скобки, то есть избавимся от них. Мы ожидаем, что после избавления от скобок значение выражения 8 + (−9 + 3) также должно быть равно 2.

Первое правило раскрытия скобок

Если перед скобками стоит знак плюс — все числа, которые стоят внутри скобок, сохраняют свой знак.

Формула раскрытия скобок

(a − b) = a - b

Мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Значит плюс нужно опустить вместе со скобками. То, что было в скобках — запишем без изменений, вот так:


пример решения

Так мы получили выражение без скобок 8 − 9 + 3. Снова получаем в результате вычисления два.

  • 8 + (−9 + 3) = 2
  • 8 − 9 + 3 = 2

Поэтому между выражениями 8 + (−9 + 3) и 8 − 9 + 3 можно поставить знак равенства, поскольку они равны одному и тому же значению:

  • 8 + (−9 + 3) = 8 − 9 + 3
  • 2 = 2

Потренируемся применять правило на примерах.

Пример 1. Раскрыть скобки в выражении 8 + (−3 − 1)

Как рассуждаем:

Перед скобками стоит плюс, значит этот плюс опустим вместе со скобками. А то, что было в скобках оставим без изменений:

  • 8 + (−3 − 1) = 8 − 3 − 1

Пример 2. Раскрыть скобки в выражении 6 + (−2)

Как рассуждаем:

Перед скобками стоит плюс, значит применим то же правило:

  • 6 + (−2) = 6 − 2

Раскрытие скобок в предыдущих пример выглядит, как обратная операция замены вычитания сложением.

В выражении 6 − 2 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 6 + (−2). Но если в выражении 6 + (−2) раскрыть скобки, то получится снова 6 − 2.

Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после любых других преобразований.

Идем дальше. Теперь упростим выражение 2a + a − 5b + b.

Чтобы упростить такое выражение, нужно привести подобные слагаемые. Для этого нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:

  • 2a + a - 5b + b = 2a + a + (-5b) + b = (2 + 1) * a + (-5 + 1) * b = 3a + (-4b)

Получили выражение 3a + (−4b). Раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок: опустим скобки вместе с плюсом, который стоит перед этими скобками.

  • 3a + (−4b) = 3a − 4b

Таким образом, выражение 2a + a − 5b + b упрощается до 3a − 4b.

После открытия одних скобок, по пути можно найти другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в таком выражении:

  • 2 + (−3 + 1) + 3 + (−6)

Здесь нужно раскрыть скобки в двух местах. Снова применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед:

  • 2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6

Пример 3. Раскрыть скобки 6 + (−3) + (−2)

Как рассуждаем:

В обоих местах перед скобками стоит плюс. Применяем первое правило раскрытия скобок:

  • 6 + (−3) + (−2) = 6 − 3 − 2

Можно встретить такой пример, когда первое слагаемое в скобках записано без знака. Например, в выражении 1 + (2 + 3 − 4) первое слагаемое в скобках 2 записано без знака. Какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ интуитивно понятен — перед двойкой будет стоять плюс.

Дело в том, что даже в скобках перед двойкой стоит плюс, просто мы его не видим так как плюс не принято записывать. Полная запись положительных чисел выглядит так: +1, +2, +3, но плюсы по традиции не записывают, поэтому положительные числа мы всегда видим в таком виде: 1, 2, 3.

Поэтому, чтобы раскрыть скобки в выражении 1 + (2 + 3 − 4), нужно как обычно опустить скобки вместе с плюсом, который стоит перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:

  • 1 + (2 + 3 − 4) = 1 + 2 + 3 − 4

Пример 4. Раскрыть скобки в выражении (−7)

Как рассуждаем:

Перед скобками стоит плюс, но мы его не видим так как до него нет других чисел или выражений. Убираем скобки, применив первое правило раскрытия скобок:

  • (−7) = −7

Пример 5. Раскрыть скобки 9a + (−5b + 6c) + 2a + (−2d)

Как рассуждаем:

Видим два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишем без изменений:

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Получи больше пользы от Skysmart:

Второе правило раскрытия скобок

Здесь рассмотрим второе правило раскрытия скобок. Звучит так:

Второе правило раскрытия скобок

Если перед скобками стоит знак минус — все числа, которые стоят внутри скобок, меняют свой знак на противоположный.

Формула раскрытия скобок

−(a − b) = −a + b

Например, раскроем скобки в выражении 5 − (−2 − 3)

Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:


пример решения 2

Так мы получили выражение без скобок 5 + 2 + 3. Это выражение равно десяти, как и предыдущее выражение со скобками было равно 10.

  • 5 − (−2 − 3) = 10
  • 5 + 2 + 3 = 10

Поэтому между выражениями 5 − (−2 − 3) и 5 + 2 + 3 можно поставить знак равенства так как они равны одному и тому же значению:

  • 5 − (−2 − 3) = 5 + 2 + 3
  • 10 = 10

Пример 1. Раскрыть скобки в выражении 18 − (−1 − 5)

Как рассуждаем:

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

18 − (−1 − 5) = 18 + 1 + 5

Пример 2. Раскрыть скобки −(−6 + 7)

Как рассуждаем:

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

−(−6 + 7) = 6 − 7

Пример 3. Раскрыть скобки −(−7 − 4) + 15 + (−6 − 2)

Как рассуждаем:

Здесь мы видим два места, где нужно раскрыть скобки. В первом случае применим второе правило раскрытия скобок, а во втором — первое правило:

−(−7 − 4) + 15 + (−6 − 2) = 7 + 4 + 15 − 6 − 2

Пример 4. Раскрыть скобки в выражении a − (3b + 3) + 10

Как рассуждаем:

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

a − (3b + 3) + 10 = a − 3b − 3 + 10

Другие правила раскрытия скобок

Правило раскрытия скобок при делении

Если после скобок стоит знак деления — каждое число внутри скобок делится на делитель, который стоит после скобок.

Формула раскрытия скобок

(a + b) : c = a/c + b/c.

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые.

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2/3. Для этого сначала заменим деление умножением на обратное число: 

  • (x + 2) : 2/3 = (x + 2) * 3/2.

Далее умножим скобку на число:

  • (x + 2) * 3/2 = x * 3/2 + 2 * 3/2.

Правило раскрытия скобок при умножении:

Если перед скобками стоит знак умножения — каждое число, которое стоит внутри скобок, нужно умножить на множитель перед скобками.

Формула раскрытия скобок

a(b + c) = ab + ac

Пример 1. Раскрыть скобки 5(3 − x)

Как решаем:

В скобке у нас стоят 3 и −x, а перед скобкой — пятерка. Значит, каждый член скобки нужно умножить на 5:


пример решения 3

Знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей.

Пример 2. Упростить выражение: 5(x + y) − 2(x − y)

Как решаем: 5(x + y) − 2(x − y) = 5x + 5y − 2x + 2y = 3x + 7y.

Таблица с формулами раскрытия скобок

Эти таблицы с правилами раскрытия скобок можно распечатать и обращаться к ним, когда возникнут сомнения в ходе решения задачки. 

Правила раскрытия круглых скобок вида (-a), в которых находится одночлен

При сложении:

b + (-a) = b - a

b - (-a) = b + a

(-a) + b = -a + b

При умножении:

(-a)b = -ab

a(-b) = -ab

(-a)(-b) = ab


Правила раскрытия круглых скобок, в которых находится многочлен

Скобки убирают, знаки всех слагаемых в скобках не меняют, если:

  • перед скобкой стоит знак плюс:

a + (b - c + d) = a + b - c + d

  • выражение начинается со скобки и перед ней нет знака:

(a+b-c)+d=a+b-c+d

Скобки убирают, знаки всех слагаемых в скобках меняются на противоположные, если:

  • перед скобкой стоит знак минус:

a - (b - c + d) = a - b + c - d

  • выражение начинается с минуса перед скобкой:

-(a + b - c) + d = -a - b + c + d


Раскрытие круглых скобок при умножении одночлена на многочлен

a + b(c + d - f + e) = a + bc + bd - bf + be

a + b(c + d - f + e) = a + bc + bd - bf + be

-a(b + c - d) + f = -ab - ac + ad + f

Раскрытие круглых скобок при умножении многочлена на многочлен

(a + b)(c - d) = a(c - d) + b(c - d) = ac - ad + bc - bd

(-a + b)(c + d) = -a(c + d) + b(c + d)= -ac - ad + bc + bd

Раскрытие круглых скобок при возведении многочлена в степень

(a + b)2 = (a + b)(a + b) = a(a + b) + b(a + b)= a2 + ab + ab + b2 = a2 + 2ab + b2

Скобка в скобке

В 7 классе на алгебре можно встретить задачи со скобками, которые вложены внутрь других скобок. Вот пример такого задания:

  • упростить выражение  7x + 2(5 − (3 x + y)). 

Чтобы успешно решать подобные задания, нужно:

  • внимательно разобраться со скобками — какая в какой находится.
  • раскрывать скобки последовательно, начиная с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение и просто переписывать его, как есть. Разберем подробнее тот же самый пример.

Пример 1. Раскрыть скобки и привести подобные слагаемые 7x + 2(5 − (3x + y))

Как решаем:

Начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относится – это сама скобка и минус перед ней. Всё остальное переписываем также как было.   

  • 7x + 2(5 − (3x + y)) = 7x + 2(5 − 3 x − y).

Теперь раскроем вторую скобку, внешнюю:

  • 7x + 2(5 − (3x + y)) = 7x + 2(5 − 3 x − y) = 7 x + 2 * 5 − 2 * 3 x − 2 * y.

Упростим получившееся выражение:

  • 7x + 2(5 − (3x + y)) = 7x + 2(5 − 3 x − y) = 7 x + 2 * 5 − 2 * 3 x − 2 * y = 7x + 10 − 6x − 2y.

Приведем подобные:

  • 7x + 10 − 6x − 2y = x + 10 − 2y

Готово!

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида. То есть в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок раскрытия скобок согласован с порядком выполнения действий:

  • возвести многочлены в скобках в натуральную степень;
  • слева направо провести умножение и деление;
  • когда в скобках останутся только слагаемые, раскрыть скобки и привести подобные.

Пример 1. Раскрыть скобки и упростить выражение:

-(2a + 5b) + (3a - 2b + 1) - (2a + 4) = -2a - 5b + 3a - 2b + 1 - 2a - 4 = (-2a + 3a - 2a) + (-5b - 2b) + (1 - 4) = -a - 7b - 3

Пример 2. Доказать, что при любых значениях переменной a значение выражения 3(2a - 7) - (a + (5a - 4)) — отрицательно.

Доказательство:

33(2a - 7) - (a + (5a - 4)) = 3(2a - 7 ) - (a + 5a - 4)= 6a - 21 - a - 5a + 4 = (6a - a - 5a) + (-21 + 4) = -16/p>

Значение выражения не зависит от переменной и всегда отрицательно. Что и требовалось доказать.

Задачи для самостоятельного решения

На алгебре в 6 и 7 классе придется решать задачки с раскрытием скобок много и часто. Поэтому лучше запомнить правила и практиковаться уже сейчас. 

Задание 1. Раскройте скобки в выражении: 2 + (6 + 3) + 2 - (1 + 1)

Задание 2. Раскройте скобки в выражении: - 21 + 14 + (-1 + 5) - 11 + ( 3 + 2)

Задание 3. Раскройте скобки в выражении: 3 * (-4m + 3n - 5)

Задание 4. Раскройте скобки в выражении: -(12a - 5b - 2)

Задание 5. Раскройте скобки в выражении: 3(x - 9)

Задание 6. Раскройте скобки:


пример

Задание 7. Раскройте скобки:


задание

 

Комментарии

Открыть диалоговое окно с формой по клику
Бесплатные шпаргалки
Бесплатные шпаргалки
Бесплатные шпаргалки
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2