Единичная окружность

Единичная окружность — идеальный инструмент для тригонометрических операций. В этой статье узнаем больше про этот вид окружности и возможных с ней действиях.
  • Автор

    Лидия Казанцева

  • Дата публикации

    30.12.2020

  • Просмотры

    1343

Единичная окружность в тригонометрии

Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.


рисунок

Поясним, как единичная окружность связана с тригонометрией.

В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

  • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
  • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
  • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
  • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:


Единичная окружность с градусами

Радиан — одна из мер для определения величины угла.

Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

Число радиан для полной окружности — 360 градусов.

Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

  • 2π радиан = 360°
  • 1 радиан = (360/2π) градусов
  • 1 радиан = (180/π) градусов
  • 360° = 2π радиан
  • 1° = (2π/360) радиан
  • 1° = (π/180) радиан

Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

Уравнение единичной окружности

x^2 + y^2 = 1

При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:


рисунок

основное тригонометрическое тождество

Для чего использовать единичную окружность

  • определить синус, косинус, тангенс и котангенс угла
  • найти значения тригонометрических функций для некоторых значений числового и углового аргумента
  • вывести основные формулы тригонометрии
  • вывести формулы приведения
  • найти области определения и области значений тригонометрических функций
  • определить периодичность тригонометрических функций
  • определить четность и нечетность тригонометрических функций
  • определить промежутки возрастания и убывания тригонометрических функций
  • определить промежутки знакопостоянства тригонометрических функций
  • применить радианное измерение углов
  • найти значения обратных тригонометрических функций
  • решить простейшие тригонометрические уравнения
  • решить простейшие неравенства.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в современную школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. Приходите на бесплатный вводный урок и попробуйте сами!

 
Бесплатный вводный урок
Шаг 1 из 2. Данные ученика
Класс
Цель обучения
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0