Проверьте знания по математике бесплатно
Узнать бесплатно

Как найти радиус окружности

Как найти радиус окружности
276.5K

Решить задачу можно по-разному: посчитать на калькуляторе, взять алгоритм из похожей задачки, списать у одноклассника. Самый эффективный и радостный — запомнить формулу и прийти к ответу самому. В этой статье расскажем про способы поиска радиуса окружности.

Чтобы найти радиус окружности, нужно знать её диаметр или длину. Радиус равен половине диаметра. Если известна длина окружности, используйте формулу: , где ( L ) — длина окружности, .

Например, если длина окружности 31.4, то радиус равен 5.

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — часть плоскости, которая лежит внутри окружности. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать - как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

формула радиуса окружности, если известна площадь круга

Если известна длина

, где C — длина окружности.

формула радиуса окружности, если известна длина

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

Диаметр и радиус — это основные геометрические характеристики окружности.

  • Диаметр — отрезок, который соединяет две точки окружности и проходит через её центр.
  • Радиус — отрезок, который соединяет центр окружности с любой её точкой.

Примеры: для круга радиусом 5 см, диаметр будет 10 см.

, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

формула радиуса окружности, если известен диаметр окружности

 

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ прямоугольника.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

, где a, b — стороны вписанного прямоугольника.

формула радиуса окружности, если известна диагональ вписанного прямоугольника

Получи больше пользы от Skysmart:

Если известна сторона описанного квадрата

, где a — сторона квадрата.

Сторона описанного квадрата равна диаметру окружности.

формула радиуса окружности, если известна сторона описанного квадрата

Если известны стороны и площадь вписанного треугольника

, где a, b, с — стороны треугольника, S — площадь треугольника.

формула радиуса окружности, если известны стороны и площадь вписанного треугольника

Если известна площадь и полупериметр описанного треугольника

, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

формула радиуса окружности, если известна площадь и полупериметр описанного треугольника

Если известна площадь сектора и его центральный угол

, где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

формула радиуса окружности, если известна площадь сектора и его центральный угол

Если известна сторона вписанного правильного многоугольника

, где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

формула радиуса окружности, если известна сторона вписанного правильного многоугольника

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

таблица формул нахождения радиуса окружности

 

 

Комментарии

Бесплатные шпаргалки
Бесплатные шпаргалки
Бесплатные шпаргалки
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2