Основные понятия
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.
Квадратное уравнение — это уравнение вида ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:
- если D < 0, корней нет;
- если D = 0, есть один корень;
- если D > 0, есть два различных корня.
Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.
Неполные квадратные уравнения бывают трех видов:
Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения. |
Решение неполных квадратных уравнений
Как мы уже знаем, есть три вида неполных квадратных уравнений:
- ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
- ax² + c = 0, при b = 0;
- ax² + bx = 0, при c = 0.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Получи больше пользы от Skysmart:
-
Прокачивай знания на курсах математики.
-
Выбирай из 1200+ репетиторов по математике.
Записывайся на бесплатные курсы для детей.
Как решить уравнение ax² = 0
Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.
Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.
Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.
Пример 1. Решить −5x² = 0.
Как решаем:
- Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
- По шагам решение выглядит так:
−5x² = 0
x² = 0
x = √0
x = 0
Ответ: 0.
Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса! |
Как решить уравнение ax² + с = 0
Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.
Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.
Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:
- перенесем c в правую часть: ax² = - c,
- разделим обе части на a: x² = - c/а.
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение - c/а может быть отрицательным или положительным. Разберем конкретные случаи.
Если - c/а < 0, то уравнение x² = - c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при - c/а < 0 ни для какого числа p равенство р² = - c/а не является верным.
Если - c/а > 0, то корни уравнения x² = - c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = - c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = - c/а. Ура, больше у этого уравнения нет корней.
В двух словах квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:
- не имеет корней при - c/а < 0;
- имеет два корня х = √- c/а и х = -√- c/а при - c/а > 0.
Пример 1. Найти решение уравнения 9x² + 4 = 0.
Как решать:
- Перенесем свободный член в правую часть:
9x² = - 4
- Разделим обе части на 9:
x² = - 4/9
- В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
Ответ: уравнение 9x² + 4 = 0 не имеет корней.
Пример 2. Решить -x² + 9 = 0.
Как решаем:
- Перенесем свободный член в правую часть:
-x² = -9
- Разделим обе части на -1:
x² = 9
- Найти корни:
x = √9
x = -3, 3
Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.
Как решить уравнение ax² + bx = 0
Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.
Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.
Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.
Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.
Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:
- x = 0;
- x = −b/a.
Пример 1. Решить уравнение 2x² - 32x = 0
Как решать:
- Вынести х за скобки
х(2x - 32) = 0
- Это уравнение равносильно х = 0 и 2x - 32 = 0.
- Решить линейное уравнение:
2x = 32,
х = 32/2
- Разделить:
х = 16
- Значит корни исходного уравнения — 0 и 16.
Ответ: х = 0 и х = 16.
Пример 2. Решить уравнение 3x² - 12x = 0
Как решать:
Разложить левую часть уравнения на множители и найти корни:
Ответ: х = 0 и х = 4.
Для удобства мы собрали все виды неполных квадратных уравнений и способы их решения на одной картинке-шпаргалке.