Определение
Алгебраическая дробь — это дробь, в числителе и/или знаменателе которой стоят алгебраические выражения (буквенные множители). Вот так:
Алгебраическая дробь содержит буквенные множители и степени.
Необыкновенной алгебраическую дробь делают буквы. Если заменить их на цифры, то карета превратится в тыкву — алгебраическая дробь тут же станет обыкновенной.
Если вы засомневались, что должно быть сверху — числитель или знаменатель — переходите по ссылке и освежите знания по теме обыкновенных дробей.
Сокращение алгебраических дробей
Сократить алгебраическую дробь — значит разделить ее числитель и знаменатель на общий множитель. Общий множитель числителя и знаменателя в алгебраической дроби — многочлен и одночлен.
Сокращение дробей с буквами и степенями проходит в три этапа:
Определите общий множитель.
Сократите коэффициенты.
Поделите все числители и все знаменатели на общий множитель.
Для сокращения степеней в дробях применяем правило деления степеней с одинаковыми основаниями:
Пример сокращения дроби со степенями и буквами:
Следуя формуле сокращения степеней в дробях, сокращаем x3 и x2
Всегда делим на наименьшее значение в степени
Вычитаем: 3 - 1
Получаем сокращенную дробь.
Запоминаем: сокращать можно только одинаковые буквенные множители. Иными словами, сокращать можно только дроби с одинаковыми буквами.
❌ Так нельзя | ✅ Так можно |
Примеры сокращения алгебраических дробей с одночленами:
Пример сокращения №1.
Как решаем:
Общий множитель для числителя и знаменателя — 8.
Х и x2 делим на x и получаем ответ.
Получаем сокращенную алгебраическую дробь.
Пример сокращения №2.
Как решаем:
Общий множитель для числителя и знаменателя — 7.
b3 и b делим на b.
Вычитаем: 3 - 1 и получаем ответ.
Получаем сокращенную дробь.
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Получи больше пользы от Skysmart:
-
Прокачивай знания на курсах математики.
-
Выбирай из 1200+ репетиторов по математике.
Записывайся на бесплатные курсы для детей.
Сокращение алгебраических дробей с многочленами
Чтобы верно сократить алгебраическую дробь с многочленами, придерживайтесь двух главных правил:
сокращайте многочлен в скобках только с таким же многочленом в скобках;
сокращайте многочлен в скобках целиком — нельзя сократить одну его часть, а другую оставить. Не делайте из многочленов одночлены.
❌ Так нельзя | ✅ Так можно |
Запомните: многочлены в алгебраической дроби находятся в скобках. Между этими скобками вклиниться может только знак умножения. Всем остальным знакам там делать нечего.
Примеры сокращения алгебраических дробей с многочленами:
Последовательно сокращаем: сначала x, затем (x+c), далее сокращаем дробь на 6 (общий множитель).
Сокращаем многочлены a+b (в дроби их 3).
Вынесение общего множителя при сокращении дробей
При сокращении алгебраических дробей иногда не хватает одинаковых многочленов. Для того, чтобы они появились, вынесите общий множитель за скобки.
Чтобы легко и непринужденно выносить множитель за скобки, пошагово выполняйте 4 правила:
Найдите число, на которое делятся числа каждого одночлена.
Найдите повторяющиеся буквенные множители в каждом одночлене.
Вынесите найденные буквенные множители за скобку.
Далее работаем с многочленом, оставшимся в скобках.
Алгебра не терпит неточность. Всегда проверяйте, верно ли вынесен множитель за скобки — сделать это можно по правилу умножения многочлена на одночлен.
Для умножения одночлена на многочлен нужно умножить поочередно все члены многочлена на этот одночлен. |
Пример 1.
Как решаем:
Выносим общий множитель 6
Делим 42/6
Сокращаем получившиеся одинаковые многочлены.
Пример 2.
Как решаем: в числителе выносим общий множитель a за скобки, в знаменателе выносим общий множитель c за скобки и сокращаем оставшиеся в скобках многочлены.
Сокращение дробей. Формулы сокращенного умножения
Перед формулами сокращенного умножения не устоит ни одна дробь — даже алгебраическая.
Чтобы легко ориентироваться в формулах сокращенного умножения, сохраняйте и заучивайте таблицу. Формулы подскажут вам, как решать алгебраические дроби.
Квадрат суммы | (a+b)2 = a2 + 2ab + b2 |
Квадрат разности | (a-b)2 = a2 - 2ab - b2 |
Разность квадратов | a2 – b2 = (a – b)(a+b) |
Куб суммы | (a+b)3 = a3 + 3a2b + 3ab2 + b3 |
Куб разности | (a-b)3 = a3 - 3a2b + 3ab2 - b3 |
Сумма кубов | a3 + b3 = (a + b)(a2- ab+b2) |
Разность кубов | a3 - b3 = (a - b)(a2+ ab+b2) |
Примеры сокращения дробей с помощью формул сокращенного умножения:
Применяем формулу разности квадратов a2 − b2 = (a − b) (a + b) и сокращаем одинаковые многочлены.
Чтобы раскрыть тему сокращения алгебраических дробей и полностью погрузиться в мир числителей и знаменателей, решите следующие примеры для самопроверки.
Примеры сокращения дробей за 7 и 8 классы
Сократите дроби:
Тема сокращения алгебраических дробей достаточно обширна, и требует к себе особого внимания. Чтобы знания задержалась в голове хотя бы до ЕГЭ, сохраните себе памятку по сокращению дробей. Этот алгоритм поможет не растеряться при встрече с алгебраическими дробями лицом к лицу.
Чтобы сократить дробь, найдите общий множитель числителя и знаменателя.
Поделите числитель и знаменатель на общий множитель.
Чтобы разделить многочлен на множители, вынесите общий множитель за скобку.
Второй способ разделить многочлен на множители — применить формулы сокращенного умножения.
Выучите все формулы сокращенного умножения — они помогут легко преобразовывать выражения и экономить время при решении задач.
Можно забыть свое имя, но формулу разности квадратов помнить обязательно — она будет встречаться чаще других.
Всегда проверяйте результат сокращения: алгебра — точна, коварна и не любит давать вторые шансы.