3 простых формулы, чтобы посчитать среднее арифметическое

Автор
Лидия Казанцева
Дата публикации
30.11.2020
Просмотры
4641
Понятие среднего арифметического
Среднее арифметическое нескольких чисел — это сумма этих чисел, которую разделили на количество слагаемых. Вот так:

Например, найдем среднее арифметическое чисел 5, 6 и 7. Обозначим среднее значение латинской буквой «m» и посчитаем сумму этих чисел.
- 5 + 6 + 7 = 18
Разделим результат на количество чисел в задании, то есть на три.
Так получилась формула среднего арифметического:

Способы вычисления среднего арифметического
Стандартная формула. Чтобы найти среднее арифметическое, нужно сложить все числа и поделить эту сумму на их количество. Формула выглядит так:

где
- x — среднее арифметическое;
- xⁿ — конкретное значение;
- n — количество значений.
Преимущества:
- подходит при нормальном распределении значений в выборке;
- легко считать;
- интуитивно доступно.
Недостатки:
- сложно представить распределение значений;
- можно запутаться в разных величинах.
Вычисление моды или наиболее часто встречающегося значения. Формула такая:

где
- M₀ — мода;
- x₀ — нижняя граница интервала, который содержит моду;
- n — величина интервала;
- fm — частота (сколько раз в ряду встречается то или иное значение);
- fm-1 — частота интервала предшествующего модальному;
- fm+1 — частота интервала следующего за модальным.
Преимущества:
- подходит для формирования общественного мнения;
- подходит для нечисловых данных;
- доступно для понимания.
Недостатки:
- моды может не быть при отсутствии повторов;
- мод может быть несколько (многомодальное распределение).
Не обязательно быть одаренным ребенком, чтобы хватать пятерки по математике. Нейробиологи говорят, что разница только в том, с какой скоростью дети учатся: обычный ребенок может выучить все то же самое, что и одаренный, только ему потребуется больше времени и усилий.
В современной школе Skysmart верят, что математика — для всех, просто каждому нужен свой подход. Запишите ребенка на бесплатный пробный урок, чтобы начать заниматься в своем темпе, с внимательным личным учителем и в удовольствие.
Вычисление медианы, то есть значения, которое делит упорядоченную выборку на две половины и находится между ними. Если такого значения нет, за медиану принимают среднее число между границами половин выборки. Формула выглядит так:

где
- Mₑ — медиана;
- x₀ — нижняя граница интервала, который содержит медиану;
- h — величина интервала;
- f i — частота (сколько раз в ряду встречается то или иное значение);
- Sm-1 — сумма частот интервалов предшествующих медианному;
- fm — число значений в медианном интервале (его частота).
Преимущества:
- дает самую реалистичную оценку;
- устойчива к выбросам.
Недостатки:
- сложнее вычислить из-за необходимости упорядочивать.
Применить эти знания можно в любой сфере жизни, где нужно обобщить и дать среднюю оценку: в магазине, на работе, в диалоге с другом или во время презентации перед инвесторами. Еще пригодятся, чтобы рассчитать среднюю скорость движения.
Средняя скорость движения — это весь пройденный путь, поделенный на время движения. Формула:

Так мы рассмотрели самые основные методы нахождения среднего значения. Теперь осталось попрактиковаться на примерах, чтобы быстро решать задачки на контрольной.
Примеры расчета среднего арифметического
Пример 1. Вычислить среднее арифметическое 33,3 и 55,5.
Как решаем:
Чтобы найти среднее арифметическое двух чисел, надо сложить эти числа и результат разделить на 2: (33,3 + 55,5) : 2 = 88,8 : 2 = 44,4.
Пример 2. Посчитать среднее арифметическое 7,5 и 8 и 0,5.
Как решаем:
Чтобы найти среднее арифметическое трех чисел, надо сложить эти числа и результат разделить на 3: (7,5 + 8 + 0,5) : 3 = 16 : 3 = 5,33.
Пример 3. Найти среднее арифметическое 202, 105, 67 и 9.
Как решаем:
Чтобы найти среднее арифметическое трех чисел, надо сложить эти числа и результат разделить на 4: (202 + 105 + 67 + 9) : 4 = 383 : 4 = 95,75.
Пример 4. Сколько в среднем тратит школьник денег в неделю, если в понедельник он потратил 80 рублей, во вторник 75 рублей, в среду и четверг по 100 рублей, в пятницу 50 рублей.
Как решаем:
Чтобы найти сколько в среднем школьник потратил за пять дней, надо сложить эти суммы и результат разделить на 5: (80 + 75 + 100 + 100 + 50) : 5 = 405 : 5 = 81.
Ответ: школьник в неделю тратит в среднем 81 рубль.
В 5 классе можно искать среднее арифметическое с помощью онлайн-калькулятора. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников: