Как найти координаты точки?

Современные технологии позволяют в несколько кликов поделиться с другом нашим месторасположением. Достаточно зайти в гугл карты и пошерить координаты точки. В этом материале узнаем, как такое же действие отобразить на бумаге.
  • Автор

    Лидия Казанцева

  • Дата публикации

    17.12.2020

  • Просмотры

    7485

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

 

А вот и координаты увлекательных уроков математики: на интерактивной платформе и в комфортном темпе!

Запишите ребенка на бесплатный вводный урок в онлайн-школу Skysmart, чтобы закрыть пробелы по школьной программе и не бояться контрольных.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.


Начало координат делит оси на две части: положительную и отрицательную
  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

четыре координатные четверти

Правила координат:

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.


Определение координат точки

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).


фиксируем: A (1; 2) и B (2; 3)

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

 
  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).

  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).

  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
    Начало координат — точка O

  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
    оси абсцисс, имеют одинаковые абсциссы.

  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
     оси ординат, имеют одинаковые ординаты

  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
    Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0)

  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
    Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y)

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

 
  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.

  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.

  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
    Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

 
  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.

  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
    Подняться из этой точки параллельно оси Oy вверх на 2 единицы

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:


как легко и быстро находить координаты точек

В детской школе Skysmart ученики чертят графики на специальной онлайн-доске вместе с учителем. А еще решают задачки в интерактивном формате и смело задают вопросы, которые бывает неловко спросить перед всем классом.

Запишите ребенка на бесплатный вводный урок математики и начните заниматься весело и в удовольствие уже завтра!

 
Бесплатный вводный урок
Шаг 1 из 2. Данные ученика
Класс
Цель обучения
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0