b733e4
Проверьте знания по математике бесплатно
Узнать бесплатно

Арифметическая прогрессия: свойства и формулы

Арифметическая прогрессия: свойства и формулы
592.1K

9 класс — самое насыщенное время за все школьные годы: нужно запомнить множество формул и научиться их применять. В этом материале расскажем самое главное об арифметической прогрессии.

Прогрессия - это числовая последовательность, где каждый член определяется каким-либо правилом.

  • Арифметическая прогрессия:
    • Формула n-го члена: an = a1 + d(n - 1)
    • Сумма первых n членов: Sn = n/2(2a1 + (n - 1)d)
  • Геометрическая прогрессия:
    • Формула n-го члена: bn = b1 * qn - 1
    • Сумма первых n членов: Sn = b1 * (1 - qn)/(1 - q), где q ≠ 1

Определение числовой последовательности

Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.

Последовательности можно задавать разными способами:

 
  1. Словесно — когда правило последовательности объясняется словами:

    «Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23...»


  2. Аналитически — когда указана формула ее n-го члена: yn = f(n).

    Последовательность yn = C называют постоянной или стационарной.


  3. Рекуррентно — когда указывается правило, которое помогает вычислить n-й член последовательности, если известны её предыдущие члены.

    Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.

    Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...


  4. Графически — когда график последовательности состоит из точек с абсциссами
    1, 2, 3, 4...
    прогрессия

Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.

Свойства числовых последовательностей:

 
  1. Последовательность {yn} называют возрастающей, если каждый ее член кроме первого больше предыдущего:

    y1 < y2 < y3 < … < yn < yn+1 < …


  2. Последовательность {yn} называют убывающей, если каждый ее член кроме первого меньше предыдущего:

    y1 > y2 > y3 > … > yn > yn+1 > …

    Возрастающие и убывающие последовательности называют монотонными последовательностями.


  3. Последовательность можно назвать периодической, если существует такое натуральное число T, что начиная с некоторого N, выполняется равенство: yn = yn+T. Число T — длина периода.

 

 

Запишем числа, которые первые пришли в голову: 7, 19, 0, −1, −2, −11, 0… Сколько бы чисел не написали, всегда можно сказать, какое из них первое, какое — второе и так до последнего. То есть мы можем их пронумеровать.

Пример числовой последовательности выглядит так:


таблица прогрессии

В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.

N-ный член алгебраической последовательности — это число с порядковым номером n.

Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2,..., a10..., an.


таблица прогрессии

N-ый член последовательности можно задать формулой. Например:

  • Формула an = 3n − 5 задает последовательность: −2, 1, 4, 7, 10…
  • Формула an = 1 : (n + 2) задает последовательность: 1/3, 1/4, 1/5, 1/6...

Определение арифметической прогрессии

Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.

Рассмотрим основные определения и как найти арифметическую прогрессию.

Арифметическая прогрессия — это числовая последовательность a1, a2,..., an,... для которой для каждого натурального n выполняется равенство:

an+1= an + d, где d — это разность арифметической прогрессии.

Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d.

Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле:


формула разности арифметической прогрессии

Если известны первый член a1 и n-ый член прогрессии, разность можно найти так:


формула если известные члены прогрессии

Арифметическая прогрессия бывает трех видов:

 
  1. Возрастающая — арифметическая прогрессия, у которой положительная разность, то есть d > 0.

    Пример: последовательность чисел 11, 14, 17, 20, 23... — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0.


  2. Убывающая — арифметическая прогрессия, у которой отрицательная разность, то есть d < 0.

    Пример: последовательность чисел 50, 48, 46, 44, 42... — это убывающая арифметическая прогрессия, так как ее разность d = –2 < 0.


  3. Стационарная — арифметическая прогрессия, у которой разность равна нулю, то есть d = 0.

    Пример: последовательность чисел 23, 23, 23, 23, 23... — это стационарная арифметическая прогрессия, так как ее разность d = 0.

Экзамены — это почти всегда стресс. Подготовка к ЕГЭ по математике онлайн в школе Skysmart поможет снять волнение перед экзаменом и придаст уверенности в своих знаниях.

Получи больше пользы от Skysmart:

Свойство арифметической прогрессии


свойство арифметической прогрессии

Переведем с языка формул на русский: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Что как раз объясняет название «арифметическая» прогрессия.

Формула n-го члена арифметической прогрессии

Из определения арифметической прогрессии следует, что равенство истинно:


формула

Поэтому:

формула формула формула

и т.д.

Значит, формула

Переведем с языка формул на русский: если мы знаем первый член и разность арифметической прогрессии, то можем найти любой ее член.

Арифметическую прогрессию можно назвать заданной, если известен ее первый член и разность.

Формулу an = a1 + d * (n - 1) называют формулой n-го члена арифметической прогрессии.

Формулы арифметической прогрессии

Формулы арифметической прогрессии:

  • Формула n-го члена: an = a1 + d(n - 1), где a1 - первый член, d - разность, n - номер члена.
  • Сумма n первых членов: Sn = n/2 * (a1 + an).

Примеры:

  • Для a1 = 2, d = 3, n = 5: a5 = 2 + 3(5 - 1) = 14.
  • Для n = 4, a1 = 1, an = 10: S4 = 4/2 * (1 + 10) = 22.

В 9 классе проходят все формулы арифметической прогрессии. Давайте узнаем, какими способами ее можно задать:

 
  1. Рекуррентной формулой: формула

  2. Формулой n-го члена: an = a1+ d · (n - 1).

  3. Формулой вида an = kn + b, где k и b — числа, n — число членов последовательности.

Сумма первых n членов арифметической прогрессии (аn) обозначается Sn:


формула

Формулы нахождения суммы n членов арифметической прогрессии:


формула
формула

Чтобы быстрее запомнить формулы можно использовать такую табличку с основными определениями:


таблица с основными определениями

Рассмотрим пример арифметической прогрессии.

Дано: арифметическая прогрессия (an), где a1 = 0 и d = 2.

Найти: первые пять членов прогрессии и десятый член прогрессии.

Решение арифметической прогрессии:

 
  1. Чтобы найти последующий член прогрессии, нужно к предыдущему прибавить разность:

    a2 = a1 + d = 0 + 2 = 2;

    a3 = a2 + d = 2 + 2 = 4;

    a4 = a3 + d = 4 + 2 = 6;

    a5 = a4 + d = 6 + 2 = 8.


  2. Используем общую формулу an = a1 + d * (n - 1).

    По условиям задачи n = 10, подставляем в формулу:

    a10 = a1 + 2 * (10 - 1) = 0 + 2⋅9 = 18.

Геометрическая прогрессия

Геометрическая прогрессия

Геометрическая прогрессия — это последовательность (bn), в которой каждый последующий член можно найти, если предыдущий член умножить на одно и то же число q.

Если последовательность (bn) является геометрической прогрессией, то для любого натурального значения n справедлива зависимость:

bn+1 = bn * q, где q — знаменатель геометрической прогрессии

Если в геометрической прогрессии (bn) известен первый член b1 и знаменатель q, то можно найти любой член прогрессии:

  • b2 = b1 * q;
  • b3 = b2 * q = b1 * q * q = b1 * q²;
  • b4 = b1 * q³;
  • и т. д.

Общий член геометрической прогрессии bn можно вычислить при помощи формулы:

bn = b1 * qn−1, где n — порядковый номер члена прогрессии, b1 — первый член прогрессии, q — знаменатель.

Пример 1. 2, 6, 18, 54,… — геометрическая прогрессия b = 2, q = 3.

Пример 2. 3, -3, 3, -3,… — геометрическая прогрессия b = 3, q = -1.

Пример 3. 7, 7, 7, 7,… — геометрическая прогрессия b = 7, q = 1.

 

Комментарии

Бесплатные шпаргалки
Бесплатные шпаргалки
Бесплатные шпаргалки
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2