b733e4
Проверьте знания по математике бесплатно
Узнать бесплатно

Таблица производных функций

Таблица производных функций
347.9K

Самый частый вопрос, который возникает у старшеклассников на уроках алгебры, звучит примерно так: «А нам это в жизни пригодится?». Отвечаем: пригодится! Математика тесно связана с физикой, которая описывает окружающий нас мир. И формулы из таблицы производных основных элементарных функций тоже имеют практический смысл.

Практикуйся по этой теме! Пройди задание №8 ЕГЭ по профильной математике

Производные функций — это математическое понятие, описывающее скорость изменения одной величины в зависимости от другой. Производная функции f'(x) по аргументу (x) определяется как предел отношения приращения функции к приращению аргумента:

Примеры:

Что такое производная и зачем она нужна

Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:

Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.

Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.

Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:

Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.

у = 10

у′ = 0

Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.

у = 10 + 3х

Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1, а также по правилам вычисления производных (c*f(x))'=cf'(x) и (f(x)+g(x))'=f'(x)+g'(x).

у = 10 + 3х

у′ = 0 + 3

у′ = 3

Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.

Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.

Быстрее освоить производные поможет обучение на курсах по математике в онлайн-школе Skysmart.

Производные основных элементарных функций

Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Поэтому приведем стандартную таблицу производных.

Функция f (x)

Производная f' (х)

С (т. е. константа, любое число)

0

х

1

xn

nxn-1

√x

1/(2√x)

sin x

cos x

cos x

-sin x

tg x

1/cos2(х)

ctg x

-1/sin2x

ex

ex

ax

ax * ln a

ln x

1/x

logax

1/(x * ln a)

Элементарные функции можно складывать, умножать друг на друга, находить их разность или частное — словом, выполнять любые математические операции. Но для этого существуют определенные правила.

Получи больше пользы от Skysmart:

Общие правила дифференцирования

Для решения задач на дифференцирование нужно запомнить (или записать в шпаргалку) пять несложных формул:

(c ⋅ f)′ = c ⋅ f′

(u + v)′ = u′ + v′

(u - v)′ = u′ - v′

(u ⋅ v)′ = u′v + v′u

(u/v)' = (u'v - v'u)/v2

В данном случае u, v, f — это функции, а c — константа (любое число).

С константой все просто — ее можно смело выносить за знак производной. Специально запоминать придется лишь формулы, где требуется разделить одну функцию на другую или перемножить их и найти производную от результата.

Например: требуется найти производную функции y = (5 ⋅ x3).

y′ = (5 ⋅ x3)′

Вспомним, что константу, а в данном случае это 5, можно вынести за знак производной:

y′ = (5 ⋅ x3)’ = 5 ⋅ (x3)′ = 5 ⋅ 3 ⋅ х3-1 = 15х2

Попробуйте самостоятельно решить эти примеры. Правильные ответы найдете в конце статьи:

Правила дифференцирования сложных функций

Конечно, далеко не все функции выглядят так, как в вышеуказанной таблице. Как быть с дифференцированием, например, вот таких функций: y = (3 + 2x2)4?

Сложной функцией называют такое выражение, в котором одна функция словно вложена в другую. Производную сложной функции f(y) можно найти по следующей формуле: (f(y))′ = f′(y) ⋅ y′. Другими словами, нужно умножить производную, условно говоря, внешней функции на производную внутренней.

Пример 1

Найдем производную функции y(x) = (3 + 2x2)4.

Заменим 3 + 2x2 на u и тогда получим y = u4.

Согласно приведенному выше правилу дифференцирования сложных функций у нас получится:

y = y′u ⋅ u′x = 4u3 ⋅ u'x

А теперь выполним обратную замену и подставим исходное выражение:

4u3 ⋅ u′x = 4 (3 + 2x2)3 ⋅ (3 + 2x2)′ = 16 (3 + 2x2)3 ⋅ х

Пример 2

Найдем производную для функции y = (x3 + 4) cos x.

Для дифференцирования этой функции воспользуемся формулой (UV)′ = U′V + V′U.

y′ = (x3 + 4)′ ⋅ cos x + (x3 + 4) ⋅ cos x′ = 3x2 ⋅ cos x + (x3 + 4) ⋅ (-sin x) = 3x2 ⋅ cos x – (x3 + 4) ⋅ sin x

Ответы на задания

Комментарии

Бесплатный вебинар
Бесплатный вебинар
Бесплатный вебинар
Проверьте знания по математике бесплатно
  • Оставьте заявку на бесплатное тестирование
  • Приходите на тестирование вместе с ребёнком
  • Получите оценку знаний и конкретные шаги, чтобы прокачать их
Шаг 1 из 2
Шаг 1 из 2
Шаг 2 из 2