Удельная теплоемкость — это количество тепла, необходимое для повышения температуры 1 кг вещества на 1°C. Формула для расчета удельной теплоемкости:
где:
- c — удельная теплоемкость, Дж/(кг·°C)
- Q — количество теплоты, Дж
- m — масса вещества, кг
Пример:
Для воды удельная теплоемкость
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при охлаждении — отдает.
Количество теплоты — энергия, которую получает или теряет тело при теплопередаче.
Минуточку, давайте закончим с количеством теплоты.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание Q = cm(tконечная - tначальная) Охлаждение Q = cm(tначальная - tконечная) Q — количество теплоты [Дж] c — удельная теплоемкость вещества [Дж/кг*˚C] m — масса [кг] tконечная — конечная температура [˚C] tначальная — начальная температура [˚C] |
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
Теплопередача — процесс передачи теплоты (обмена энергией).
Здесь все совсем несложно, видов всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Получи больше пользы от Skysmart:
-
Подготовься к ОГЭ на пятёрку.
-
Подготовься к ЕГЭ на высокие баллы.
Записывайся на бесплатные курсы для детей.
Решай задания в бесплатном тренажёре ЕГЭ.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание Q = cm(tконечная - tначальная) Охлаждение Q = cm(tначальная - tконечная) Q — количество теплоты [Дж] c — удельная теплоемкость вещества [Дж/кг*˚C] m — масса [кг] tконечная — конечная температура [˚C] tначальная — начальная температура [˚C] |
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества c= Q/m(tконечная - tначальная) Q — количество теплоты [Дж] c — удельная теплоемкость вещества [Дж/кг*˚C] m — масса [кг] tконечная — конечная температура [˚C] tначальная — начальная температура [˚C] |
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества c= C/m c — удельная теплоемкость вещества [Дж/кг*˚C] C — теплоемкость вещества [Дж/˚C] m — масса [кг] |
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела Q = C(tконечная - tначальная) Q — количество теплоты [Дж] c — удельная теплоемкость вещества [Дж/кг*˚C] m — масса [кг] tконечная — конечная температура [˚C] tначальная — начальная температура [˚C] |
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
Газы | C, Дж/(кг·К) |
Азот N2 | 1051 |
Аммиак NH3 | 2244 |
Аргон Ar | 523 |
Ацетилен C2H2 | 1683 |
Водород H2 | 14270 |
Воздух | 1005 |
Гелий He | 5296 |
Кислород O2 | 913 |
Криптон Kr | 251 |
Ксенон Xe | 159 |
Метан CH4 | 2483 |
Неон Ne | 1038 |
Оксид азота N2O | 913 |
Оксид азота NO | 976 |
Оксид серы SO2 | 625 |
Оксид углерода CO | 1043 |
Пропан C3H8 | 1863 |
Сероводород H2S | 1026 |
Углекислый газ CO2 | 837 |
Хлор Cl | 520 |
Этан C2H6 | 1729 |
Этилен C2H4 | 1528 |
Металлы и сплавы | C, Дж/(кг·К) |
Алюминий Al | 897 |
Бронза алюминиевая | 420 |
Бронза оловянистая | 380 |
Вольфрам W | 134 |
Дюралюминий | 880 |
Железо Fe | 452 |
Золото Au | 129 |
Константан | 410 |
Латунь | 378 |
Манганин | 420 |
Медь Cu | 383 |
Никель Ni | 443 |
Нихром | 460 |
Олово Sn | 228 |
Платина Pt | 133 |
Ртуть Hg | 139 |
Свинец Pb | 128 |
Серебро Ag | 235 |
Сталь стержневая арматурная | 482 |
Сталь углеродистая | 468 |
Сталь хромистая | 460 |
Титан Ti | 520 |
Уран U | 116 |
Цинк Zn | 385 |
Чугун белый | 540 |
Чугун серый | 470 |
Жидкости | Cp, Дж/(кг·К) |
Азотная кислота (100%-ная) NH3 | 1720 |
Бензин | 2090 |
Вода | 4182 |
Вода морская | 3936 |
Водный раствор хлорида натрия (25%-ный) | 3300 |
Глицерин | 2430 |
Керосин | 2085…2220 |
Масло подсолнечное рафинированное | 1775 |
Молоко | 3906 |
Нефть | 2100 |
Парафин жидкий (при 50С) | 3000 |
Серная кислота (100%-ная) H2SO4 | 1380 |
Скипидар | 1800 |
Спирт метиловый (метанол) | 2470 |
Спирт этиловый (этанол) | 2470 |
Топливо дизельное (солярка) | 2010 |
Задача
Какое твердое вещество массой 2 кг можно нагреть на 10 ˚C, сообщив ему количество теплоты, равное 7560 Дж?
Решение:
Используем формулу для нахождения удельной теплоемкости вещества:
c= Q/m(tконечная - tначальная)
Подставим значения из условия задачи:
c= 7560/2*10 = 7560/20 = 378 Дж/кг*˚C
Смотрим в таблицу удельных теплоемкостей для металлов и находим нужное значение.
Металлы и сплавы | C, Дж/(кг·К) |
Алюминий Al | 897 |
Бронза алюминиевая | 420 |
Бронза оловянистая | 380 |
Вольфрам W | 134 |
Дюралюминий | 880 |
Железо Fe | 452 |
Золото Au | 129 |
Константан | 410 |
Латунь | 378 |
Манганин | 420 |
Медь Cu | 383 |
Никель Ni | 443 |
Нихром | 460 |
Олово Sn | 228 |
Платина Pt | 133 |
Ртуть Hg | 139 |
Свинец Pb | 128 |
Серебро Ag | 235 |
Сталь стержневая арматурная | 482 |
Сталь углеродистая | 468 |
Сталь хромистая | 460 |
Титан Ti | 520 |
Уран U | 116 |
Цинк Zn | 385 |
Чугун белый | 540 |
Чугун серый | 470 |
Ответ: латунь