Фотон

Свет — очень полезная штука. Благодаря нему мы видим вообще все в этом мире, уличные фонари включаются вовремя, а у мыльных пузырей красивые разводы. Но вот из чего свет состоит — вопрос, конечно, интересный.
  • Автор

    Карина Хачатурян

  • Рубрика

    11 класс, ЕГЭ/ОГЭ

  • Дата публикации

    04.06.2021

  • Просмотры

    1355

Корпускулярно-волновой дуализм

Вопрос, на который вам однозначно не ответит никто: «Свет — это частица или волна?». Это очень сложный вопрос, на который ученые давно пытаются ответить.

В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы.

Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию.

Интерференция и дифракция

Интерференция — это явление, при котором происходит наложение двух волн и образуются так называемые «максимумы» и «минимумы» — самые светлые и самые темные участки. Выглядит это так:


Интерференция света

В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн.

Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень.

В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве.

Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику.

Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим.

В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны.

Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света.

Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

Энергия и импульс фотона

Каждый фотон переносит некоторое количество энергии. Именно это количество называется энергией фотона.

Энергия фотона (соотношение Планка-Эйнштейна)

E = hv

E — энергия фотона [Дж]

h — постоянная Планка

h = 6,6 × 10-34 Дж × c

ν — частота фотона [Гц]

Импульс фотона связан с энергией следующим соотношением:

Соотношение импульса и энергии фотона

p = E/c

p — импульс фотона [(кг*м)/с]

E — энергия фотона [Дж]

с — скорость света [м/с]

c = 3 * 108 м/с

Подставляем вместо E формулу энергии фотона: p = hv/c

А вместо частоты формулу v = с/λ: p = hc/cλ

Сокращаем скорость света и получаем формулу импульса.

Импульс фотона

p = h/λ

p — импульс фотона [(кг*м)/с]

h — постоянная Планка

h = 6,6 × 10-34 Дж × c

λ — длина волны [м]

Давление света

Сила Лоренца — это сила, действующая на частицу, движущуюся в магнитном поле.

Если рассматривать свет как совокупность фотонов, то можно предположить, что свет, как и любая другая электромагнитная волна, может оказывать давление. Именно такое предположение сделал Джеймс Максвелл в 1873 году и не прогадал.

Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов. Каждый фотон обладает импульсом p = hv/c.

Полный импульс, получаемый поверхностью тела, равен p = hv/c * N.

Из механики известно, что давление — это отношение силы к площади, на которую эта сила воздействует: p = F/S.

Не перепутайте: импульс и давление обозначаются одинаковой буквой, но величины разные!

Второй закон Ньютона в импульсной форме имеет вид F = p * Δt, где p — это импульс, а Δt — промежуток времени, за которое импульс меняется на значение p.

Тогда световое давление определяется так: p = F/S = (p * Δt)/S = hvN/Sc.

При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (в этом случае удар неупругий, так как черный цвет поглощает фотон).

Предсказанное Максвеллом существование светового давления было экспериментально подтверждено физиком П. Н. Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали. Значение давления света составило ≈ 4.10-6 Па.

Опыты Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом.

Фотоэффект

Еще одно важное явление, подтверждающее корпускулярную природу света, — это фотоэффект. Пока разберем только принцип этого явления, а сложную математику оставим на другой раз. 😉

На рисунке представлена экспериментальная установка для исследования фотоэффекта.


Установка для исследования фотоэффекта

Установка представляет собой стеклянный вакуумный баллон с двумя металлическими электродами, к которым прикладывается напряжение. Один из электродов через кварцевое окошко освещается монохроматическим светом (монохроматический свет — это свет, длина волны которого неизменна). Под действием фотонов из отрицательно заряженного электрода выбиваются так называемые фотоэлектроны. Они притягиваются к положительному электроду и образуется фототок.

Многочисленные экспериментаторы установили основные закономерности фотоэффекта:


  1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.

  2. Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект.

  3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

  4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Эйнштейн исследовал фотоэффект и пришел к выводу, что свет имеет прерывистую структуру, то есть состоит из фотонов.

Фотоэффект используется, например, в датчиках света. Уличные фонари, оборудованные датчиками света, включаются автоматически при определенном уровне естественного освещения.

Техническое применение фотонов

Важное техническое устройство, использующее фотоны — лазер. Лазеры применяют во многих областях технологии: с их помощью режут, варят и плавят металлы, получают сверхчистые металлы. На лазерах основаны многие точные физические приборы — например, сейсмографы. Ну а с лазерными принтерами и указками вы наверняка знакомы.

На определении местоположения фотонов основаны многие генераторы случайных чисел. Чтобы сгенерировать один бит случайной последовательности, фотон направляется на лучеделитель — штуку, которая разделяет свет на два потока.

Для любого фотона существует лишь две возможности, причем с одинаковой вероятностью: пройти лучеделитель или отразиться от его грани. В зависимости от того, прошел фотон через лучеделитель или нет, следующим битом в последовательность записывается 0 или 1.

 
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0

Консультация с экспертом по поступлению в университет