b733e4
Научим находить область определения функции
Начать учиться
Modal window id: popup-shopmath

Область определения функции

Область определения функции
681K

Математика — наука точная. Поэтому у каждого упражнения есть решение, у каждого числа — свой знак, а у каждой функции — область определения. О последней и поговорим: узнаем, как найти область определения функции.

Понятие области определения функции

Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.

Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.

Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так: y = f(x).

Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.

Из понятия функции сформулируем определение области определения функции.

Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох. Чтобы обозначить область определения некоторой функции y, используют запись D(y).

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

  • Например, область значений функции y = x2 — это все числа больше либо равные нулю. Это можно записать так: Е (у): у ≥ 0.

Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:

 
  1. Через точку с запятой указываем два числа: левую и правую границы промежутка.

  2. Если граница входит в промежуток, ставим возле нее квадратную скобку, если не входит — круглую.

  3. Если у промежутка нет правой границы, записываем так: +∞. Если нет левой границы, пишем -∞.

  4. Если нужно описать множество, состоящее из нескольких промежутков, ставим между ними знак объединения: ∪.

Например, все действительные числа от 2 до 5 включительно можно записать так:

  • [2; 5].

Все положительные числа можно описать так:

  • (0; +∞).

Ноль не положительное число, поэтому скобка возле него круглая.

Modal window id: popup-mathcomix

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x2 и другие. А области их определения изучаем, как свойства.

Рассмотрим области определения основных элементарных функций.

Получи больше пользы от Skysmart:

Область определения постоянной функции

Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа. 

Смысл функции — в том, что каждому значению аргумента соответствует значение функции, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.

Например:

  • Область определения постоянной функции y = -3 — это множество всех действительных чисел: D(y) = (−∞, +∞) или D(y) = R.
     
  • Областью определения функции y = 3√9 является множество R.

Для тех, кто учится в 7 классе, материала выше достаточно, чтобы подготовиться к контрольной работе. А вот старшеклассникам нужно разбираться в теме несколько глубже — поэтому продолжаем.

Еще больше наглядных примеров и практики — на курсах по математике в онлайн-школе Skysmart!

Modal window id: popup-skysmartbox

Область определения функции с корнем

Функцию с корнем можно определить так: y = n√x, где n — натуральное число больше единицы.

Рассмотрим две вариации такой функции.

Область определения корня зависит от четности или нечетности показателя:

  • Если n — четное число, то есть, n = 2m, где m ∈ N, то ее область определения есть множество всех неотрицательных действительных чисел:
    Область определения корня зависит от четности или нечетности показателя:
  • Если показатель корня нечетное число больше единицы, то есть n = 2m+1, при этом m принадлежит к N, то область определения корня — множество всех действительных чисел:
    множество всех действительных чисел

Значит, область определения каждой из функций y = √x, y = 4√x, y = 6√x,… есть числовое множество [0, +∞). А область определения функций y = 3√x, y = 5√x, y = 7√x,… — множество (−∞, +∞).

Пример 

Найти область определения функции: пример 1

Как решаем:

Подкоренное выражение должно быть неотрицательным, но поскольку оно стоит в знаменателе, то равняться нулю не может. Следовательно, для нахождения области определения необходимо решить неравенство x2 + 4x + 3 > 0.

Для этого решим квадратное уравнение x2 + 4x + 3 = 0. Находим дискриминант:

D = 16 - 12 = 4 > 0

Дискриминант положительный. Ищем корни:


Дискриминант положительный

Значит парабола f(x) = x2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x2 + 4x + 3 < 0), а другая часть — выше оси (неравенство x2 + 4x + 3 > 0).

Поскольку коэффициент a = 1 > 0, то ветви параболы смотрят вверх. Можно сделать вывод, что на интервалах (−∞, -3) ∪ (−1, +∞) выполнено неравенство x2 + 4x + 3 > 0 (ветви параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке (-3; -1) ниже оси абсцисс, что соответствует неравенству x2 + 4x + 3 < 0.


вершина параболы расположена на промежутке (-3; -1)

Ответ: область определения: D(f) = (−∞, -3) ∪ (−1, +∞).

Если в знаменателе функции стоит выражение, зависящее от х, то для того, чтобы найти область определения данной функции, нам нужно исключить точки, которые обращают знаменатель в ноль.

Область определения степенной функции

Степенная функция выглядит так: y = xa, то есть, f(x) = xa, где x — переменная в основании степени, a — некоторое число в показателе степени.

Область определения степенной функции зависит от значения показателя степени.

Перечислим возможные случаи:

  • Если a — положительное целое число, то область определения функции есть множество действительных чисел: (−∞, +∞).
  • Для нецелых действительных положительных показателей степени: D(f) = [0, +∞).
  • Если a — отрицательное целое число, то область определения функции представляет собой множество (−∞, 0) ∪ (0, +∞).
  • Для остальных действительных отрицательных a область определения степенной функции — числовой промежуток (0, +∞).

При a = 0 степенная функция y = xa определена для всех действительных значений x, кроме x = 0. Это связано с тем, что мы не определяли 00. А любое отличное от нуля число в нулевой степени равно единице. То есть, при a = 0 функция приобретает вид y = x0 = 1 на области определения (−∞, 0) ∪ (0, +∞).

Рассмотрим несколько примеров.

 
  1. Область определения функций y = x5, y = x12 — множество R, так как показатели степени целые положительные.

  2. Степенные функции Степенные функции определены на интервале [0, +∞), так как их показатели положительные, но не целые.

  3. Область определения функции y = x−2, как и функции y = x−5 — это множество (−∞, 0) ∪ (0, +∞), так как показатели степени целые отрицательные.

  4. Область определения степенных функций y = x-√19, y = x-3e, Область определения степенных функций — открытый числовой луч (0, +∞), так как их показатели не целые и отрицательные.

Область определения показательной функции

Показательную функцию можно задать формулой y = ax, где переменная x — показатель степени, а — больше нуля и не равно единице.

Область определения показательной функции — это множество R.

Примеры показательных функций:

  • Пример показательной функции
  • y = ex
  • y = (√15)x
  • y = 13x.

Область определения каждой из них (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.

Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:

  • D (ln) = (0, +∞) и D (lg) = (0, +∞).

Рассмотрим примеры логарифмических функций: 

  • пример логарифмической функции
  • y = log7x
  • y = lnx

Область определения этих функций есть множество (0, +∞).

Пример

Укажите, какова область определения функции: пример 2

Как решаем:

Составим и решим систему:


система

Графическое решение:


графическое решение системы

Ответ: область определения: D(f) = (−3, -2) ∪ (−2, +∞).

Область определения тригонометрических функций

Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.

  • Функция, которая задается формулой y = sinx, называется синусом, обозначается sin и определяется на множестве всех действительных чисел. Область определения синуса — это множество всех действительных чисел, то есть, D(sin) = R.
  • Функция, которая задана формулой y = cosx, называется косинусом, обозначается cos и определяется на множестве R. Область определения функции косинус — множество всех действительных чисел: D(cos) = R.
  • Функции, которые заданы формулами y = tgx и y = ctgx, называются тангенсом и котангенсом и обозначаются tg и ctg. Область определения тангенса — это множество всех действительных чисел, кроме чисел Область определения котангенса. Область определения котангенса — это множество всех действительных чисел, кроме чисел πk, k ∈ Z.

Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что формула и x ∈ r, x ≠ πk, k ∈ Z соответственно.

Пример

Найдите область определения функции f(x) = tg2x.

Как решаем:

Так как a(x) = 2x, то в область определения не войдут следующие точки:


пример 4

Перенесем 2 из левой части в знаменатель правой части:


пример 5

В результате пример 6. Отразим графически:


графическое решение

Ответ: область определения: область определения.

Область определения обратных тригонометрических функций

Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.

  • Функция, которая задается формулой y = arcsinx и рассматривается на отрезке [−1, 1], называется арксинусом и обозначается arcsin.

    Область определения арксинуса — это множество [−1, 1], то есть, D(arcsin) = [−1, 1].
  • Функция, которая задается формулой y = arccosx и рассматривается на отрезке [−1, 1], называется арккосинусом и обозначается arccos.

    Область определения функции арккосинус — отрезок [−1, 1], то есть, D(arccos) = [−1, 1].
  • Функции, которые задаются формулами вида y = arctgx и y = arcctgx и рассматриваются на множестве всех действительных чисел, называются арктангенсом и арккотангенсом и обозначаются arctg и arcctg.

    Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.

Таблица областей определения функций

Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.

И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните. 

Функция

Область определения функции

Постоянная

y = C

 

R

Корень

y = n√x 

 

[0 ; +∞) , если n — четное;

(-∞; +∞) , если n  — нечетное.

Степенная

y = xa 

 

(-∞; +∞) , если a > 0, a ∈ Z;

[0 ; +∞), если a > 0, a ∈ R, a ∉ Z;

(-∞; 0) ∪ (0; +∞) , если a < 0, a ∈ Z;

(0; +∞), если a ∈ R, a ≠ Z;

(-∞; 0) ∪ (0, +∞), если a = 0.

Показательная

y = ax 

 

R

Логарифмическая

y = lognx

 

(0; +∞) 

Тригонометрические

y = sin(x)

y = cos(x)

y = tg(x)

y = ctg(x)

 

R

R

x ∈ R, x ≠ π/2 + πk, k ∈ Z

x ∈ R, x ≠ πk, k ∈ Z

Обратные тригонометрические

y = arcsin(x)

y = arccos(x)

y = arctg(x)

y = arcctg(x)

 

[-1; 1]

[-1; 1]

R

R  

 
Открыть диалоговое окно с формой по клику

Получите план обучения, который поможет понять и полюбить математику

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению
  2. Определим уровень и подберём курс
  3. Расскажем, как 
    проходят занятия

Оставляя заявку, вы принимаете условия соглашения